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AEGTRaCT 

The online computer system in use at the 15' bubble Chamber 

is described, with emphasis on the program. The system is used 

to log and display data about the bubble chamber and its support 

systems, and has been very useful in improving both the 

efficiency of the chamber operation and the physics value of the 

bubble chamber pictures. This note is sufficiently detailed to 

serve as a useful guide to the online program. Experiences and 

techniques of possible value for other small computer projects 

are given. Paragraphs of more general interest have been flagged 

for the reader who is uninterested in program details. 
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TBE 15 FOOT BUBBLE CiUWBER ONLINE COMPUTER SYSTEM --- 

I. INTRODUCTION 

* This note describes the on.li.ne computer system in use for 

data logging at the Fennilab 15' bubble chamber. It is intended 

to serve two audiences: those wishing to obtain a general idea 

of what the system does; and to give detailed descriptions of the 

program so that an experienced PDP-11 assembly language programmer, 

by using this note and the actual program listings, could have 

enough information to either modify this program or borrow some 

of the program's features for another project. To spare the 

former group unnecessary detail, I have marked the paragraphs 

which are relevent to a general overview of the computer system 

with a * in the left margin. Sections I through IV* XII and XIII 

are the most important for this overview. 

* Most of the note is concerned with what the online program 

does and how it does it. Only a brief description of the computer 

hardware, devices interfaced to the computer, systems programs 

supplied by Digital Equipment Corporation and Fermilab computer 

group programs will be given, but most of these are covered by 

the references appearing at the end of the paper. Operating 

instructions and commands to the outline program also are not 

given here, they are kept in a notebook in the bubble chamber 

control room. 
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II. PURPOSE OF THE ONLINE COMPUTER SYSTEM 

* The primary purpose of the computer system is to gather data 

about the 15' bubble chamber, store it for later use, and display 

selected data to the bubble chamber operators. Most of this data 

is of interest only to the bubble chamber operators, but some data 

is expected to be of interest to the physicists running an 

experiment in the 15' bubble chamber. Such data includes: the 

date, time, roll number, frame number, bubble chamber magnet current, 

chamber temperature, chamber pressure and pressure drop, and number 

of hadron beam particles entering the chamber; all of which are 

recorded on magnetic tape each time the chamber is pulsed. 
* Data of interest to the operators includes more detailed 

information about the bubble chamber itself: temperatures and 

pressures at several points inside the chamber, at the piston rings 

and under the piston, cooling loop parameters, etc.; and information 

about the bubble chamber support systems, such as the superconduc- 

ting magnet and helium liquifier, hydrogen refrigerator, expan- 

sion system, and gas and liquid storage tanks. Data of interest 

in these support systems includes temperatures, pressures, flow 

ratesl liquid levels, valve settings, etc. Having this information 

available enables the operators to run the chamber more efficiently 

and economically. 

* Using a computer to log this data has several distinct advan- 

tages compared to logging it manually. Sets of readings can be 

taken more frequently and on a regular time basis. Such reading 

continues automatically, even when all the operating crew is 

involved with some chamber problem. Data recorded during such 
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problem times are frequently very important in understanding the 

malfunction and would probably not be taken without the computer 

because the crew is busy working on the problem. Computer read- 

ings are usually more accurate and the computer can quickly convert 

readings to the appropriate physical units. The computer can 

average several related readings taken at (essentially) the same 

time, for example, the several vapor pressure thermometers inside 

the chamber volume can be averaged to give the average chamber 

temperature. Averages can also be made of all the readings of a 

particular piece of data taken in specified time periods. Another 

job that the computer can do well is to calculate the rate of 

change of a particular reading with time. This information can 

be extremely useful, one example is the cooling rate of the 

bubble chamber windows and chamber body during chamber cooldown 

from room to liquid hydrogen temperatures. Too high a cooldown 

rate could damage the glass bubble chamber windows. Another example, 

see Figure 1, is the level in the liquid helium storage dewar. 

During magnet operation, liquid helium is continuously added to the 

dewar by a liquifier and liquid from the dewar is transferred to the 

magnet periodically when it is needed. Reading the helium level in 

the dewar shows only how much liquid is in the dewar, the rate of 

change of the level tells you how much excess liquid is being made 

or, if negative, how long the magnet can be run under the present 

conditions. The helium liquifier can be tuned up using this rate 

information. Studying many level readings taken over a period of 

time will give the period and quantity of the batch liquid transfers 

to the magnet. The computer can store a large amount of data, some 

of it up to three weeks old, on the disk which is then immediately 
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available for the operator to study. Data can be stored on 

magnetic tape for indefinite periods and retrieved offline on a 

large computer. Such magnetic tapes are far less bulky then 

recording the same amount of information on paper. Finally, the 

computer can make listings of selected data, including data 

acquired up to three weeks earlier, and make graphs of such data 

at the operator's request. 

* In short, the computer can save operators time by recording, 

analyzing, and displaying data and record it more frequently, 

accurately, regularly and usefully than it could be done by hand. 

In my experience at the 15' bubble chamber, there has been a real 

need for data which is both accurate and quickly available to 

improve both bubble chamber track quality and the efficiency of 

bubble chamber operations. 

At the present time, the computer has no control functions 

over the bubble chamber. There are several reasons for this. 

Early in the design of the computer system, it was decided not to make 

operation of the chamber dependent upon the computer to the extent 

of requiring the computer system to be up before the chamber could 

run. Almost all simple routine control operations at the 15' 

bubble chamber are done by commercial air system controllers. More 

complicated control operations have long cycle times and are easily 

handled by the operators once they have accurate data on which to 

base their decisions, so the first priority for the computer system 

has been to provide that data. Now that the data logging features 

of the computer system are almost completely implemented, some 

control functions for the computer may be advisable and these are 

discussed in Section VII. 
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III. HARDWAPE 

* The basic hardware used for the 15' bubble chamber on line 

system is a rather typical Bison system provided by the Fermilab 

Computing Department. The computer is a Digital Equipment 

Corporation (DEC) PDP-11/20 with extended arithmetic element (EAE) 

and 28 K (K=l024) words of memory, the maximum possible on B 

PDP-U/20. Major DEC supplied peripherals include a 1.2 million 

word cartridge disk, 800 bits per inch 9 track magnetic tape unit, 

dual Dectape unit and a 30 character per second Decwriter terminal. 

The Computing Department also supplied a memory display scope, 600 

lines per minute printer/plotter, Bison interrupt and gate control 

unit, and CAHAC! branch driver, together with the necessary inter- 

faces and controllers.. A.more detailed list of the'hardware 

supplied by the Fermilab Computing Department is given in Table I. 

* The PDP-11/20 is a small computer with 16 bit words and a typical 

instruction execution time of 5 microseconds. It has powerful.input- 

output features which enable it to handle data transfers very quickly 

and with a minimum delay to the computing which occurs in parallel. 

Single precision integer arithmetic operations, including multiplication 

and division (with the EAE), are quickly done and fairly easy to 

program, but multiple precision operations take longer and are more 

difficult to program. Floating point arithmetic hardware is not 

available for a PDP-ll/2O and floating point software routines r-dce 

considerable memory space and are rather slow. The speed of the 

computer is more than ample for almost all of the demands at the 

bubble chamber. The exception is in the analysis of data during the 

chafiber pulse, as desribed in Section VI, but with careful programming 
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the computer execution speed is adequate even for this job. The 

major shortcoming of the PDP-11/20 has been that the memory is 

limited to 28 K words, and considerable programming effort has 

been necessary to fit the program into this available memory, as 

described in the next section. More information about the computer 

can be found in DEC supplied literature 1 . 

* W ith the computer hardware as outlined above, there are four 

places where data, programs, etc., can be stored and these are 

given in Table II in order o$ access time, with the fastest device 

first. Both the disk and the De&apes are hardware organized into 

256 word blocks, so the number of such blocks is given for the other 

storage devices on the bubble chamber system for comparison. Since 

the hardware block size on the disk is 256 words, this block size is 

used throughout the online program for data storage. General data 

buffers in memory are 256 words long and data is written on the 

magnetic tape in 256 word records. The first word of each block 

contains an identifying code, while the next three words contain 

the date and time the data was created in the usual PDP-11 format. 

Usually, the remaining 252 words contain data, see Section VII for 

details. The disk is used by the online program to hold a large 

number of data, control, and constants blocks which can be recalled 

in a very short time (less than .125 seconds per block). The 

magnetic tape is used to log data for later offline analysis. To 

obtain more disk space for the online program, a second disk cartridge 

is used to hold the complete set of disk operating system (DOS) pro- 

grams and ,for program development. The Dectapes are not used directly 

by the online program, but they are used to hold backup program source 
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files and to transfer the online program load module between disk 

cartridges. 

* Xn addition to the hardware supplied by the Computing Department, 
we have added additional peripherals to tailor the system to meet the 

needs at the bubble chamber. These include a CRT terminal (identical 

to those used on the Beam Line MAC systems),. a fast (25 microseconds 

per data point) Date1 analog to digital converter (A/D) with 128 

multiplexed differential inputs (8 of which are sample and hold) and 8 

digital to analog outputs, a digital voltmeter (DVM, 0.5 seconds per 

data point) with 64 differential inputs, a Scanivalve air signal 

scanner (0.167 seconds per data point) with 64 inputs, and a CAMAC 

crate which contains modules for digital input and output as well as 

8 channels of high speed scalars. The fast A/D is interfaced'to the 

PDP-11 unibus for both programmed and direct memory data transfers. 

The CRT terminal, DVM, and CAMAC crate are interfaced to the unibus 

for only programmed data transfers. The air signal scanner is not 

connected directly to the unibus but the addressing commands and 

address read back are transmitted through the CAMAC crate, the 

analog pressure transducer data signal input goes to the fast A/D, 

and the data ready interrupt is handled by the Bison interrupt and 

gate control unit. Two bubble chamber thermocouple read out systems, 

each for 100 inputs, are connected to the computer via the CAMAC 

crate. Each system is based on a special DVM which converts the 

thermocouple reading into temperature in degrees Kelvin. Normally, 

the computer controls each thermocouple system, although manual 

operation is also possible in case the computer is down. In addition 

to other digital inputs, the CAMAC crate also handles the output from 

the computer to a 16 digit display of key chamber expansion parameters. 

* These special devices are listed in Table III. More information 
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on the peripherals can be found in reference 2, from the manufacturer, 

or in the manuals on file at the 15' bubble chamber. 
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IV. PROGRAM INTRODUCTION 

* One of the most important considerations for the bubble chamber 

computer system is that it should require as little operator action 

as possible. Many bubble chamber operators have had little 

experience with computers and frequently they are almost completely 

occupied with the operation of the bubble chamber itself. To meet 

this requirement, the program has been written to be as easy as 

possible to restart after a program bomb-out or a power failure, 

once it has been restarted all data read in and logging is automatic, 

and the commands to display data, alter limit checks, etc., have 

been kept as simple as possible. 

* To start the computer, the operator follows the instructions for 

starting any PDP-11 (using DOS, the disk operating system3), which 

include entering the current date and time and typing a few commands 

on the DBcwriter. Once the program is started, the operator must 

tell it where to start logging data on the magnetic tape, which 

usually requires only one or two commands. All data read in and 

logging will now begin and no further action is required of the 

operator. The latest constants and control tables needed by the 

program are stored on the disk, so even recent changes are already 

available and do not need to be re-entered by the operator. Also, 

the data logged on the disk when the program was running previously 

are imme;diat~ezl~y -avaiZlable for display on op.er;ator ,c:omman-d. 

* The read in of general data occurs automatically at predetermined 

times using the internal computer clock. After the data has been 

read in and processed, it is stored on the disk in a place determined 

by the time when it was read in. The new data is written over older 

data on the disk, so that the most recent data is available for the 
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optional displays. The amount of recent data kept on the disk before 

it is overwritten depends on the type of data. This varies from 

4 hours worth (all fast data, see Sections V and VII) to 3 weeks 

worth of the data averages. The data is also logged on magnetic 

tape for later offline analysis. Every time the chamber is pulsed, 

the computer is interrupted to read in data concerning that pulse. 

After processing,this data is also stored on the disk and logged 

on the magnetic tape. In this case, the last 1024 pulses are kept 

on the disk as well as the average values which are saved for 

three weeks. 

* In most casesI display of information to the bubble chamber 

operator is optional and requires that a command be typed at the 

control CRT keyboard. Because data logging is automatic and because 

a considerable amount of data is stored on the disk, the operator 

need not look at the data at the time it is read in, but has the 

freedom to look at it several hours or even several weeks later. 

The operator can choose from several ways of displaying the data. 

He may select a list of many different data points at one selected 

time to be output temporarily on the memory scope, or permanently 

on the line printer. Or, he can select a few data points (up to 7) _ - 
and output a list either on the memory scope or line printer, of the 

values at many successive times. It is also possible to display,on the 

memory scope, a plot of any data point vs. time, four small plots each 

of a different data point vs. time, or a plot of one data point vs. 

another data point using many pairs of readings, each taken at a 

different time. These plots can be copied from the memory scope to the 

line printer/plotter, using the Bison hard copy facility'. Better 
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resolution plots of any data point vs* time may be made directly on 

the line printer using the Bison routine PLOTB5. 
* Another feature of the program is the ability to make changes 

to the constants and control tables stored on the disk. The CRT 

control terminal is particularly useful for this, because the 

program has been written so that old values of the constants are 

displayed on a line and the operator need only run the cursor over 

to the value(s) he wishes to change and type in the changes. 

(Similar to the edit facility used in some cases on the beam line 

MAC systems.) This is especially useful for modifying the limit 

checks (similar to watch lists on the MAC systems) which may be 

frequently changed by the bubble chamber operators. In this case, 

the lower limit, current value, and upper limit are displayed on a 

line and the operator can change the limit(s) while having the 

current value right in front of him. 

* The online program has been developed using'the DOS (Disk 

Operating System) provided by DEC (Digital Equipment Corporation). 

DOS provides the tools necessary to create and modify programs, 

translate them to machine language and run these programs. Additional 

tools are provided to assist in these stepsI all of which are de- 

scribed in the literature which DEC provides 3 . When the online 

program is running, a small portion of the DOS monitor (2655 words) 

remains in memory to assist in input-output operations, provide error 

diagnosticg assist in debugging programs, handle resetting the 

computer clock, etc. It also provides an easy method of returning 

to the DOS system when execution of the online program is terminated 

by operator command. 

Sk The online program also uses the BSX multi-task supervisor6, 
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developed here at Fermilab, to allocate the control of the computer 

central processor (CPU) to the various tasks which make up the online 

program. 

Each task.functions Logically as a separate subprogram. Usually, 

each task is waiting until an event variable (word in memory) becomes 

non-'Fero (an orwait on a list of two or more event variables is also 

possible). In this wait state, the task neither requires nor 

receives control of the CPU. The event variable can be set non- 

zero either by another task or by an interrupt service routine 

which receives control of the CPU as a result of a hardware inter- 

rupt. When a task's event variable is set, BSX gives control of 

the CPU to that task, provided no task with higher priority also 

requires the CPU. Once a task receives control of the CPU, it 

retains it until a hardware interrupt occurs or the task reaches 

the point where it must wait on the same (or another) event variable 

for some action, external to the task, to occur. This later case 

may occur, for example, when the task cannot proceed until a certain 

amount of time has elapsed or a requested output is completed, or it 

may occur when the task has finished its job and must wait until new 

work is required of it. In the case of a hardware interrupt, the 

registers being used by the task are Slav-e-d 

for the action specified by the interrupt. 

and the CPU is then used 

When the interrupt action 

is over, BSX checks the higher priority tasks and gives control to 

the highest priority task needing the CPU. Once all the higher 

priority tasks are satisfied, BSX restores the registers and continues 

the execution of the interrupted task at the point where it was 

interrupted. 

* BSX thus provides the means to do “first things first" which is 
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vital to any real time program, while still allowing low priority 

jobs to be completed as soon as possible. BSX also handles the 

input-output operations to the standard Bison devices: the magnetic 

tape, disk, line printer, memory scopec DEC writer (output only), 

and the control CRT terminal. The first four of these use the 

standard DOS device drivers which require 1353 words of memory. I 

have modified the Decwriter driver KBZOHT7, written here at Fermilab, 

for the control CRT terminal used for the online program. A cut 

down version of KBI.OHT serves to drive the Decwriter for output only. 

These two drivers require 830 words of memory. The BSX supervisor, 

including the taskt&W~, requires 1515 words of memory. 

* The online program currently contains 18 tasks, which are 

supervised by BSX. Seven of these are required for the six standard 

BSrSON devices listed in the last paragraph. (The control CRT 

terminal requires two tasks, one for keyboard input and the other 

to output on the CRT screen.) These tasks are described in the 

BTSON program notes6. Five tasks are used for the reading, process- 

ing and logging of general data and are described in Section V. 

Three tasks are used to log and display the data gathered during 

the chamber pulse, see Sections VI, VII and VIII. The clock task, 

which &a eJlk&t%d :eyej$y kfi? deeanc% as a. cesdlt of-.&n .in@%r&&jt f-tom the 

internal programmable clock8, is responsible for initiating the read 

in of general data and setting event variables after an interval of 

time as requested by the other tasks in the program, see Section X. 

The command task waits for the operator to enter a command on the 

keyboard, interprets: the command using the BISON subroutine CICONV', 

and then carries out the action requested by the command, see 
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Sections XT11 and IX. In the case of certain commands to list or 

display data, which may take considerable time to complete, the 

command task transfers the request to the low priority list task 

and is then available to accept another command. The list task is 

described in Section VIII. 

* Outside this task structure of the outline program are several 

interrupt service routines which are executed as a result of hardware 

interrupts. Most of these interrupts indicate that an input-output 

operation has been completed and the service routines are rather 

short and serve to notify a task that the operation has been 

completed and perhaps initiate further I/O operations. Two 

exceptions are: the clock interrupt service, CKINTR8, which updates 

the current date and time words stored in the monitor and starts 

the clock task described above; and the pulse interrupt service 

routine, described in Section VI, which reads in and processes 

data during the bubble chamber pulse. 

* A major problem when trying to do a big job with a small 

computer, such as a PDP-11/20, is to fit the program into the 

available memory. The remainder of this Section will outline the 

steps that have been taken to reduce memory requirements of the 

bubble chamber online program and some additional information can 

be found in Section X. For the last year, every major addition 

to the program has required considerable effort to reduce the 

memory required for the previous version of the program, before the 

new feature could be added. 

To use the available memory as efficiently as possible, the 

online program is written entirely in Macro assembly language. 

Assembly language generally creates one computer instruction for 
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each line of code, while a higher language, such as Fortran, will 

generate many computer instructions for each line of code. Assembly 

language, since it corresponds closely to the actual hardware of the 

computer, allows the programmer to make full use of that hardware 

to reduce both memory requirements and execution time for a given 

job. Fortran, especially for the PDP-11 computer, is slower and 

uses much more memory than assembly language. Disadvantages of 

assembly language programs are: since it coupled closely to the 

actual hardware of the computer, it is almost impossible to transfer 

programs between different types of computers; it takes several 

months for a programmer, even if he is proficient in Fortran program- 

ming, to learn to write assembly language programs reasonably well; 

and finally, even an experienced programmer takes far longer to 

generate and debug programs in assembly language than in Fortran. 

Cone estimate is that a good assembly language programmer averages 

only three to five instructions per hour to generate and completely 

debug a program.) In spite of these disadvantages, the need to 

save memory has forced the use of assembly language programs 

exclusively in the bubble chamber online program. Some Fortran 

was used for small independent hardware check out programs, and in 

early versions of the online program, before it had the current 

capabilities which are described in this note. 

Another restriction imposed by memory size and hardware limi- 

tations has been to only store data as single precision integers, 

W ith the 16 bit word size on the PDP-11, this allows a range of 

-32,768 to +32,767. While this range contains ample precision for 

almost all bubble chamber data, it does not lend itself directly 

to convenient display of the information. Most of us are more 
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familiar with a thermocouple temperature expressed as 123.4 degrees 

Kelvin rather than just the integer 1234, and this becomes more 

confusing if the rate of change of that thermocouple is expressed 

as 10 rather than 1.0 deg/hr. The Bison output formatter program 

FMTPUTlol was modified to insert a decimal point in such data before 

it is output. At the same time, the eight largest negative numbers 

were reserved as error codes and the formatter modified to print 

these out as *El through "7. These error codes tell both the operator 

and the program that the data is not present and that the value 

should not be treated as valid data. Using different error codes 

gives the operator an indication as to why the data is not present. 

Numerical operations, such as converting the raw (as read in) 

data to meaningful (inches, PSICA, etc.) units, calculating averages, 

standard deviations, etc., have been coded using integer arithmetic. 

Using the available software floaeing point arithmetic routines, 

although easier to programr would have required more memory space. 

The bubble chamber data which is available to the operator is 

stored in 3584 blocks (917,504 words) on the disk. Clearly, it 

would be impossible to store more than a very small percentage of 

this data in the 112 blocks of memory available. Using the disk to 

store data in this way, of course, required writing assembly language 

programs to store data in the proper place on the disk and to retrieve 

it on command. 

A sizable number of control and constants blocks are also stored 

on the disk and are used by the program to control its operations, 

especially to systematically process the general data, as described 

in Section V. Other disk blocks are used to hold temporary results, 
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such s the partial sums needed to calculate means and standard 

deviations every two hours. Currently, 96 such blocks are used, 

which are equivalent to a sizable fraction of the available memory. 

Such blocks are read into memory only when they are needed. 

Another group of blocks on the disk is used to hold list 

specifications. These are equivalent to the WRITE and FORMAT 

statements that one would use in Fortran to outsput a list of 

variables. Putting these specifications on the disk allows for 

the possibility of a large number of lists, each with considerable 

titles to clearly show what data 'are b.&&n~y. p-Ees.e&&e. The practical 

limit to the number of lists possible is the time and patience of 

the programmer in generating the blocks of list specifications. 

Currently, 15 lists are implemented and 50 are possible, but this 

limit could be easily increased if necessary. Twenty-eight 

additional blocks on the disk are used to hold these list 

specifications. 

Whenever any of this information 4data, control and constants, 

temporary results, or list specifications) stored on the disk is 

needed, it is read into a general buffer which has been reserved 

by the task needing the information. The task, after using the 

information, releases the general buffer so it can be used by other 

tasks. Currently, about 13 general buffers, each 256 words long, 

are needed for the online program to function smoothly. Most of 

these general buffers are generated in the remaining free memory 

just after the online program execution is started. Before these 

buffers are assigned, about 500 words of free space are needed for 

a check to be sure that the proper disk cartridge for the online 

program is in the disk unit. The online debugging system program 
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(ODT) 3t which is very useful in getting the program to work properly 

after modifications, is always linked and loaded with the online 

program. However, if it is not going to be used, the memory space 

it occupies is assigned as general buffers during the online program 

start-up procedure. Finally, the code for the start-up procedure, 

see Section X, is all in one area, and this area is also used as a 

general buffer after the program start-up phase is complete. 

Currently, there is enough space for 17 general buffers, if ODT is 

not needed. 

* Aside from increasing the amount of information storage 

available far beyond the actual memory size, this extensive use of 

the disk has another benefit. The storage on the disk is permanent 

and all the latest information is immediately available when the 

online program is started up after a power failure, program bombout, 

or other interruptions. Changing control blocks, constants blocks, 

or list specifications on the disk can be done (see Section IX) 

easily and quickly while the online program is running. Changing 

the online program itself requires 10 minutes or longer and requires 

stopping the execution of the online program (including data read 

in and logging) for that period. 

Much of the online program &s needed to handle the read in,, 

processing, and logging of data and this code must be in memory at 

all times while the program is running. The portions of the program 

which service the optional operator requests for lists, summaries, 

plots, and modification of disk blocks are only needed when these 

requests are made and have been overlayed3. Currently, there are 

three overlay segments which share an area in memory about 4100 

words long. If additional display features are desired, other 



IV - 11 TM687 
2628.000 

overlay segments of similar length can easily be added without 

using more memory. Use of the overlay feature allowed the program 

to be increased by about 7700 words (the length of the two shorter 

overlay segments) while only increasing the program memory 

requirement by about 400 words (the overhead needed to handle the 

overlaying). 

* Each of the steps outlined above has enabled the online program 

to accomplish more jobs without increasing the actual memory required. 

Some of the steps have had additional benefits, but all the steps 

have required considerable programming effort which is not at all 

apparent to someone unfamiliar with small computers. A larger, more 

powerful, and more expensive computer would reduce the amount of 

such programming effort, but in this case, the cost of the software 

was less than that for more powerful hardware. Supervisors should 

realize, however, that a considerable programming effort must be 

invested to effectively use a small computer system. In this case, 

about 15 full time months of my time was required for the program, 

spread out over the last two years. 
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V. READING AND PROCESSING OF GENERAL DATA 
* This section describes the handling of general data concerning 

the bubble chamber and its support systems. This data is slowly 

varying with time and uncertainties of a few seconds in the time 

at which it is read make little practical difference. Taking 

advantage of this fact, the data is read in and processed in large 

blocks identified by the date and time the read in process started 

and analyzed by subroutines which operate on all data in the block 

in a systematic way. The control and constants blocks needed by 

these subroutines to read in and analyze the data, are stored on 

the disk and read into general purpose buffers only when they are 

needed. Two general data b&ocks are handled in this manner. The 

read in of the fast (slow) data block is initiated every l/64 (l/16) 

hour by the clock task. Each data block is organized with an 

identifying word first, then a date word and two time words. The 

read in (which may take considerable time) and initial analysis of 

each block, is handled by a separate task, so that these operations 

can occur in parallel. The final analysis is done sequentially by 

a,third task, which requires four general buffers and 1368 words of 

memory. The read in tasks require 3675 words of memory (including 

input device drivers, current values of the data for both blocks 

and status bytes for each data word). When it is active, each 

: read in task also requires two general buffers. Aside from saving 

memory, keeping the control and constants blocks on the disk 

allows permanent changes to be made in them while the online program 

is running. This means, for example, that the read in of new pieces 

of data can be added to ei@her &he slow or fast data blocks without 

interrupting the read in and processing of all the other data by 
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the online program. 

The data for these two blocks can come from any of the devices 

listed in Table IV. The two thermocouple (TC) systems each 

contain a special digital voltmeter which reads the rather low TC 

voltages and converts to temperatures in degrees Kelvin. The 

setting time for reading each TC is typically three seconds and 

there are currently about 60 TC's on each system. The gold chrome1 

TC's are installed on the bubble chamber proper and the copper 

constantan TC's, for historical reasons, are installed on the super- 

conducting magnet, hydrogen refrigerator, and the room temperature 

optics on the chamber. The digital volt meter (DVM) reads general 

data with a settling time of 0.5 second. The high order octal 

digit of the subaddress for the DVM determines one of four ranges 

as given in Table V. The Fast A/D (Analog to Digital) converter 

reads one general data point in about 25 useconds (not counting 

program overhead time), with a least count of about 5 MV, and full 

scale range of +lO volts. The Scanivalve reads sixty-four 3 to 15 

psi air logic signals at the rate of six per second. These air 

logic signals measure, for example, the amount various control 

valves are open, pressures, flow rates, and liquid levels. Unlike 

all the other devices here, which are random access, the Scanivalve 

is sequential, so the 64 air logic signals are put sequentially 

into 64 words in the fast data block. Digital input is handled by 

sixteen 24 bit words in the CAMAC crate. Because of the mismatch 

between the 24 bit CAMAC words and the 16 bit PDP-11 words and the 

fact that digital inputs are not always exactly 16 bits long, 

considerable shuffling around must be done by the CAMAC device 

handler and the exact number of data points that can be handled by 
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the available input cannot be given. Currently, the first eight 

24 bit CAMAC words handle eight data points (magnet current, magnet 

voltage, magnet power supply voltage, precision chamber static 

pressure, and roll and frame for each of the two experiments) as 

well as the data from the two TC systems and the subaddress read 

back for the TC systems and the Scanivalve. 

The rate of 16 reads an hour for the slow data block was chosen 

to match the time required to read in all the TC's in each of the 

two TC systems. The rate of 64 read's an hour for the fast data 

block, could be doubled if there was a real need for data that often 

and more disk storage was available to keep the data for a reasonable 

amount of time. The present rate also allows time CQ read all 64 DVM 

data points into the fast data block, if desired. 

At the proper time to start a read in, the clock task sets the 

appropriate event variable. As soon as the central processor is 

available, the requested task starts the read in procedure. First, 

two general PI?XIP;po'se.'.b,ixf~'ess,..aHe reserved. One will be used to hold 

the raw data for this read. The correct ID code and current date 

and time are put into the first four words of this buffer. The read 

in control list is read from the disk into the other buffer. The 

four ID, date and time words contain the date and time when the read 

in control list was last modified; the remaining 252 words control 

what piece of data is read into the corresponding location in the 

raw data buffer. These words contain the device number in the high 

byte (high order eight bits) from Table IV, and the subaddress in 

the low byte. The device driver indicated by the first of these 

control words is now called with the subaddress and location for 

the data as arguments. Also included as an argument is a busy 
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flag; the device driver will return zero here, if it has accepted 

the input request or, if the driver is busy, it will return the 

address of an event variable that will be set nonzero when the driver 

is free. Also included in the arguments1 is the address of a counter 

of the number of data points which have been requested but not yet 

read in. The driver must increment this counter whenzit accepts a 

request and decrement it when that data has been read in. When 

this counter becomes zero, the driver sets an event variable to 

show that no more data is outstanding; the address of this event 

variable is also an argument. 

The action of the drivers for the six devices listed in Table IV 

is rather different. The drivers for the TC systems run as separate 

tasks, because they actually read the requested TC every 0.5 seconds, 

apply a test to see if the reading has settled and then wait, read 

and test again if the reading is still changing., If a time limit 

of 7.5 seconds elapses without convergence, or the meter overloads, 

an error code is put in place of the data. The DVM driver sets 

the requested address and then returns. After the 0.5 second for 

settling has elapsed, the DVM sends an interrupt and the interrupt 

service routine reads the data and sets the flag to show the DVM is 

no longer busy. The scanivalve driver sets a counter for the 64 

subaddresses, orders the scanivalve to the 0 address (home position) 

and returns. When address 0 is ready to read, the scanivalve sends 

an interrupt and the interrupt service routine reads the data, applies 

a calibration (for the pressure transducer in the scanivalve), and 

stores the calibrated data in the next location in the raw data 

buffer. If all 64 data points have not been read in, the scanivalve 
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is stepped to the next subaddress and the next interrupt waited for; 

if all data has been read, the flag is set to show that the scanivalve 

is no longer busy. The fast A/D and CAMAC inputs require only a 

few tens of microseconds to read a data point, so these two device 

&ive@s -im&di&t&~y~ redd. h.hec d&ha: add..h$an. ~$unnn. 

The read in tasks contain five dif'ferent scanners of the read in 

control list. The general scanner reads in devices numbered five 

and higher and turns on four special scanners, one for each of the 

first four devices in Table IV. Each of these scanners looks 

through the read in control list for the next entry requesting the 

read in of its device(s). The scanner then requests the device 

driver to read the desired data. If the request is accepted, the 

scanner then continues scanning the control list; if the request 

is refused (device busy), the scanner waits until the device driver 

is free and reissues the request. When each scanner finishes the 

read in control list, it is marked done. When all scanners are 

done and the outstanding data counter goes to zero, indicating that 

all the requested raw data has been read in, the task goes on to the 

next step. The special scanners are needed to allow the first four 

devices, all of which are DVM based and hence, rather slow, to be 

reading data in parallel. This reduces the read in time to the 

minimum possible, without putting any restrictions on the order of 

the requests in the read in control list. IZ some problem with the 

read in of a data point occurs or there *as no request to read any 

data in (zero device number in the read in control list), the 

appropriate error code is put in place of the data. 

The next step, once all the data has been read in, is to convert 

the raw data to data in the appropriate physical units. First a 
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flag is set to show that the data in the permanent 256 word memory 

block is changing. Next the first of four constants b"kocks is read 

from the disk into the second general buffer reserved by the task. 

The constants blocks contain four entries for each of the 252 data 

points. The first entry is a control word, which is followed by 

three calibration constants; b, s, and a: 

(physical data) = (raw data)+b*2s-16+a 1) 

Since both data and constants are stored as single precision PDP-11 

integers (15 bits plus one sign bit), the s acts as a sort of poor 

man's floating point to increase the accuracy of the calibration in 

equation 1. Bit 0 of the control wordY is set if this calibration 

is to be applied. The remaining bits of the control word, if non- 

zero, indicate a subroutine to call to do further operations on the 

data. Currently, the only such subroutine is one which adjusts 

the reading of control values (Scanivalve input) to be between 

0 and 100% open. The calibrated data is then put into the permanently 

assigned block in memory which contains the latest data points in 

physical units. Once the first fourth (63) of the data points have 

been processed, the second constants block is read into the general 

buffer, used to process the next 63 data points in the block, and 

so on. If the error code is encountered,in place of the data, that 

error code is transferred to the final buffer without any modification. 

If the result of equation 1 overflows, an error code indicating that 

the data was too big is entered in the final buffer in place of the 

data. 

Next, any desired derived quantities, such as averages, differences, 

etc. are calculated and put in the final buffer. Another possibility 
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is to calculate the short term average of a key pulse parameter. 

The sum of the data and the number of entries are stored in 

memory after each pulse by a high priority task. Now the average 

is calculated, the input memory words cleared for the next interval, 

and the average stored in the final buffer. The specifications 

for this step are stored.,in Ione ermore bLock$..on the disk, and the 

first such block is now read into the general buffer. Unlike 

previous steps which operated on all data points with very similar 

operations, here only specific data points are used in operations 

that can be very different. The control block has the usual first 

four words, but the next work is a link (the block number) to the 

next control block. The last (or only) control block will have 0 

in this word. The operations to be performed are each specified 

by a string of words in the control block; each string is terminated 

by a zero. The first word in each string specifies the subroutine 

number that the derived quantities processor will use. Next is a 

word that specifies where the data is to be stored in the final 

data buffer, followed by words specifying the input. These words 

can be constants, specify data that has just been put into this 

final buffer or the latest values of data in the other final data 

buffer. This last possibility is one of the major reasons that the 

latest values of the data for both the fast and slow data blocks 

are kept permanently in memory. A second zero, after the one 

terminating the string, ends action on the current control block. 

If the link to the next block is nonzero, that block will be read 

in and used; if it is zero, this step is complete. 

Next, the flag is set to show that the data in the final buffer 

is no longer changing, the two general buffers are released, and 
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an event variable is set to signal the task which does further 

analysis of the data that a new final data buffer is ready to 

process. The final data is written on the disk in the area for 

all data of this (fast or slow) type and, if the read request was 

at an even k hour, the data is also written on the disk in the 

area for quarter hour data of this type. Finally, if the magnetic 

tape logging is active, the data is also written out as the next 

record on the tape. 

If a read in overrun occurs, i.e., the time to start the next 

read comes up while the task is still in the raw data read in step, 

the old read in is terminated, the error code indicating overrun 

is put in the unread data locations, the task waits several seconds 

for any outstanding requests to the device drivers to be completed, 

and the old data is processed by the remaining steps of the task. 

The read in of the new data bbqti begins. 

The read in tasks for both the slow and fast data blocks are 

virtually identical, in fact, they both share some re-entrant code. 

Of course, they use different control blocks from the disk and 

read different sets of data as a result. Some care must be 

exercised in setting up the read lists for these control blocks to 

be sure that no device is requested to read more data points than 

it can in the available lime. 

The data processing task is now activated by the event variable 

which was set by the read in task after all new data was in the 

permanent memory buffer. This task completes the analysis of the 

new data. First, it reserves two general buffers for its own use. 

Its first job is to add the new data to some partial sums which are 

stored in six blocks on the disk, These partial sums are used 
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every two hours to calculate the mean and standard deviation of 

each point for all the reads during this period. The partial 

sums require six words for each data point. The number of reads 

so far in the two hour period is stored in the first word (single 

precision), the sum of the data is stored in the next two words 

(double precision), and the sum of each datum squared is stored in 

the last three words (triple precision). The sums are updated by 

reading the first of the six partial sum blocks into a general 

buffer, adding the current data for the first 42 data points to 

the 6x42 partial sum data words in the first block, and then writing 

the new information back on the disk. This process is repeated for 

the remaining five blocks. 

The next step is to calculate the rate at which all the data 

points are chang&ng with time. These rates are always expressed in 

units per hour and are calculated with respect to the data read 

15 minutes and 60 minutes ago. First, the data from 15 (60) minutes 

ago is read into one of the general buffers. The data and time 

words of this old data block are then checked to be sure that the 

block contains data read 15 (60) minutes ago, if it doesn't; a flag 

is set to show that there is no data for these rates. This could 

occur, for example, if the online program had just been started after 

having not been run for a significant period of time. The value of 

the current data minus the old data (times four if calculating a 15 

minute rate) is then stored in place of the old data. If either 

the current or the old data is missing (i.e., an error code), the 

error code for no data is stored instead. After these calculations 

are complete, one of the general buffers will contain the rates 

based on data read 15 minutes ago, and the other will contain the 
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rates based on data read 60 minutes ago. 

* The program contains a special provision to automatically print 

a list of the gold chrome1 TC values and rates on the memory scope 

every time the slow data buffer is processed. This data has 

become a virtual necessity for the bubble chamber operator to 

correctly monitor and control the bubble chamber cooldown, particularly 

in keeping the cooldown rates of the glass bubble chamber windows 

within safe limits. Before the online computer system was available, 

one operator was kept busy full-time watching no more than three or 

four TC's, calculating the cooldown rates by hand, and controlling 

the cooldown valves. A second operator was kept busy almost full- 

time reading and recording all 60 TC's every half hour. W ith the 

online computer system, the values and rates for all 60 TC's, as 

well as averages of groups of TC's, are displayed 16 times an hour. 

One operator, spending only part of his time, can easily control 

the chamber cooldown and the danger of excessive cooldown rates on 

the glass windows has been reduced considerably. 

This list is printed out on the memory scope now by the data 

processing task using the values stored in the permanent data block 

in memory and the rates stored in the two general buffers. The 

print of this list everytime the slow data is read can be turned 

off when it is not needed. 

* The next step is to check all the new data and give a warning 

message and (optionalJy) an alarm,, if it is outside limits which 

have been set by the bubble chamber operator. These checks may be 

on the current value, the 15 minute rates, or the 60 minute rates. 

Four sets of limit checks for each of the 252 points in both the 
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fast and slow data blocks are possible, but only a small subset of 

these are expected to be active at any one time. 

The control and limits used in these checks are stored in nine 

blocks on the disk. Nine words are used for each data point. The 

first of these is a control word which uses four bits for each of 

the limit checks. Two of these bits indicate that the limit check 

is turned off, or is to be made on the value, 15 minute rate, or 

60 minute rate. The third bit, if set, will cause the alarm to 

be sounded if the check is outside limits. The fourth bit, if set, 

indicates that the operator has acknowledged the out of limit 

condition for this check, and no further tests are made for it until 

the Eif iS reset. The remaining eight words are the low and high 

limits for each of the four checks. 

The limit checking can be turned off by a command from the key- 

board; however, if this is done, the alarm indication remains on 

continuously to remind the operator that the limit checks are 

disabled. If the limit checks are active, two more general buffers 

are reserved. One is used to sequentially hold the nine disk 

blocks containing the control and limit data. The data points are 

checked sequentially, skipping any checks which are turned off, 

acknowledged, or which refer to a value or rate containing an error 

code. When a check shows data outside of limits, the alarm control 

bit is tested and the alarm indication made if the bit is set. The 

identification block for this data point is then read into the fourth 

general buffer (unless it is already there because of a previous 

limit check). The data point name, number, units, and format is 

taken from this identification block for the message. The message 

is always printed out on the decwriter for a permanent record and 
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includes the value (or rate) which was out of limits, the limits, 
S or F (for slow or fast data block), the data point number, limit 

check number, date, and time, in addition to the above. If the 

check caused an alarm, a * appears next to the value. If the CRT 

screen is not being used for some other purpose, the message will 

also appear there, except that a blinking value replaces the * if 

an alarm resulted. After the message output is complete, the alarm 

indication is removed. When all limit checks have been made, the 

analysis of the new data is complete and the general buffers 

reserved for this task are released. The task then goes to an orwait 

until more work is required of it. 

If the task receives a second request for action while it is 

printing out limit check messages, it prints a message that it has 

aborted the list of messages and then goes to the new request. 

Aside from completing the analysis of new data in the fast 

and slow data blocks, this task has the third job of calculating 

the means and standard deviations for pulse, fast, and slow data 

every two hours. This requires three general buffers, one for 

holding a block of the partial sums of the data read in the last 

two hours, and one each for the output means and standard deviations. 

The equations used are: 

ii = f cxy 2) 

Where the xi are the data points read, N is the number of reads, 

G is the mean, and s is the standard deviation. 

First, the means and standard deviations are calculated for 

the pulse data read in during the last two hours. The partial sums 

for this have been stored on the disk by a high priority task which 
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is activated after each pulse has been read in. The sums are 

stored separately for each of four pulse numbers (first pulse, 

second pulse, etc. of a multipulse sequence). Since 125 points 

are stored for each pulse, three disk blocks are needed for the 

six partial sum words per data point. These are read sequentially 

into the first general buffer and the resulting means and standard 

deviations stored in the second general buffer. The number of 

pulses for the A (hadron) and B (neutrino).experiments are stored 

* in place of the means for the last two data points. As a special 

case for pulse number 0 (the first pulse), four scalars in the 

CAMAC crate are read, reset, and stored in place of the means for 

the previous four data points. These scalars are used to record 

the number of accelerator clock pulses, the number of accelerator 

pulses with beam in the Main Ring, and the number of pulses with 

beam hitting the neutrino target during the last two hours* These 

numbers have been used to study the various efficiencies which 

affect the picture taking rate at the bubble chamber. 

When the output block has been filled, it is written on the 

disk in area for means and standard deviations for the first 

pulse. If the magnetic tape logging is active, the block is also 

written as the next record on the tape. After each input partS;al 

sum block has been used, the first general buffer is cleared and 

the current date and time put into the second through fourth 

words. This buffer is then written back on the disk to clear the 

partial sums for the next two hour period. The whole process is 

then repeated for the data from the second, third, and fourth 

pulses. 

Similar operations are done next for the fast and slow data. 
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Six input partial sums blocks are used for each data type and the 

means and standard deviations are stored in separate output blocks 

and written into different areas on the disk. The means and 

standard deviations are also logged as separate records on magnetic 

tape. After completing operations on the slow data, the data 

processing task releases tht _-lree general buffers and returns to 

the orwait until more work is required of it. 

The processing of each data point in the slow and fast data 

blocks is controlled by a data status byte. These bytes are stored 

in one block on the disk and read into a permanent block in memory 

at program start up time. The result of the values assigned to 

this data status byte are shown in Table VI. The value of 0 is 

usually used to turn off the read of a bad input, f"or example an 

open TC. Three is the usual value for an input which is functioning 

correctly. Other values can be useful when debugging and setting 

up the control blocks on the disk. 

* The read in, analysis, and logging of data described in this 

Section are all automatic and require no 0perato.r intervention. 

The information needed by the program is stored in blocks on the 

disk (see Table VII) which can be set up before a bubble chamber 

run by one knowledgeable person. Permanent changes to these 

blocks to, for example, read and process a new piece of ;data or 

change the calibration constants for an existing piece of data 

can be made quickly while the online program is running without 

interrupting the data processing. Since the information is on the 

disk, such changes do not have to be made again when the program 

is restarted. These 54 blocks stored on the disk represent about 
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one half the 112 blocks of memory on this computer, which is the 

maximum amount for a PDP-11/20. Using disk storage in this way 

enables the program to handle four times the data points in a mu& 

more general way, as compared to the code described in the next 

Section. Both sections of code require about the same amount of 

memory. 
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VI. READING AND PROCESSING OF PULSE DATA 

* This Section describes the handling of data which is acquired 

and stored for each pulse of the bubble chamber. Unlike the slowly 

varying data discussed in the last Section, chamber parameters 

vary rapidly during the pulse and time is critical in correctly 

reading them. Consequently, the coding which does this job, is 

quite different in character than the rest of the online program. 

Critical parts of the code have been written to be fast at the 

expense of requiring somewhat more memory. Input and output 

buffers are permanently assigned, instead of being available for 

general use. The code is entered by an interrupt within a few 

microseconds after the electrical signal which starts the bubble 

chamber expansion system. Once entered, the interrupt code runs 

on the highest priority and retains use of the central ptiocessor 

for the duration of the chamber pulse (about 350 ms). Because of 

time requirements and the specialized and varied character of the 

data read during the pulse, all operations have been written out 

in code and no tables, etc. are read from the disk during the pulse. 

The one block of constants used is read when the online program 

is started and retained in memory at all times. The code contains 

three blocks (3x256 words) of output buffers which can hold the 

data from six pulses. The three blocks are organized with an 

identifying word first, followed by a date word. Next, are two 

time words, followed by 125 data words, and this is repeated for 

the second pulse in the block. The writing of this pulse data from 

the output buffers onto the disk and magnetic tape, the addition 

of the pulse data to partial sums blocks (for calculation of the 
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two hour means and sigmas for each pulse number), and the display 

of the pulse data are done by high priority tasks after the pulse 

is over and the interrupt code has released the central processor. 

The interrupt code, with its buffers and the one constants block 

currently require 3586 words of memory: the high priority tasks 

specifically for handling the pulse data require another 900 words 

plus one general buffer. 

Figure 2 shows the various steps taken by the code after the 

interrupt occurs on the expansion value open electrical signal. 

Also shown are a typical pressure curve inside the chamber vs. 

time and the times that beam enters the chamber and that the lights 

are flashed. ,Immediately after the interrupt occurs, eight channels 

of analog information are latched in sample and hold amplifiers and a 

direct memory access read of thBs data is started by the fact analog 

to digital converter. Usually, six of these channels receive data 

from dynamic pressure transducers at various locations inside the 

bubble chamber, between the piston rings, and under the piston. The 

remaining two channels measure the position of the chamber piston. 

The latch of the analog data occurs in a few lo seconds, the read 

in of eight channels requires about 200 1-1 seconds. Since the chamber 

piston doesn't start to move until a few hundredths of a second 

after the expansion valve open signal , these readings give chamber 

pressure and piston position before the pulse starts, i.e. their 

static values. 

Next, the time since the previous interrupt, is determined using 

the computer's internal programmable clock, which runs at 10 KHz. 

If this time is greater than a preset value in the constants block 
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(two seconds) the pulse is assumed to be the first pulse of a 

possible multipulse sequence, if the time is less, then the pulse 

is a second, third . . . etc. pulse of the sequence. A pulse 

number is now assigned for this pulse, 0 means the first (or only) 

pulse in the multipulse sequence, 1 means the second pulse, 2 the 

third, etc. Separate timing constants for five different pulse 

numbers are stored in the constants block and the correct set is now 

transferred to the active timing locations. These timing constants 

determine the length of steps A, B, and D, the length of the early, 

beam, and late gates, etc. Next, the roll and frame for both the 

A (hadron) and B (neutrino) experiments are read as well as the 

precision static pressure transducer and the magnet current. The 

next pulse output buffer (4 block long) is selected and marked to show 

the three high priority tasks that it contains new data. The static 

values of the eight A/D channels are converted to physical units 

(i.e. PSIA or inches) and transferred to this output 

transferred is the other data read in so far and the 

described above. 

buffer. Also 

timing constants 

The time remaining for step A, to the nearest 100 VS, is now 

calculated (see Figure 2) and the processor goes into a loop which 

keeps checking the clock until the necessary time has gone by. 

Every 500 us, the state of eight binary bits is checked and the 

time of any changes is recorded. These eight bits monitor important 

events during the bubble chamber pulse and are given in Table VIII. 

The checking of these eight bits is done every 500 ps in steps A, 

B, and D; in step C it is done every 100 us to get more precise 

values for beam and light flash times. 
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Step B is started after the time for step A has elapsed. This 

should be shortly before the chamber piston starts to move and the 

chamber pressure starts to drop. The eight A/D channels are sampled 

every 500 ps and then read using direct memory access by the fast 

A/D converter, which takes about 200 is. After sets of data have 

been read into two separate eight word buffers, analysis of that 

data begins while the next set of data is being read into a third 

eight word buffer. This analysis is done during read in, both to 

minimize processor time at the highest priority level, and to save 

core by using the same three eight word buffers over and over again. 

* An important piece of information about the bubble chamber is how 

much work is done by the expansion system on the chamber liquid 

during the pulse. If too little work is done, tracks will not be 

visible; if too much, track and parasitic bubbles will be too large 

and the required additional cooling of the chamber liquid will 

result in increased schlieren effects (local distortion of tracks 

and fiducials due to temperature gradients in the chamber liquid 

near the cameras), and may even overload the hydrogen refrigerator. 

The work done on the chamber liquid is: 

w= PdV 
cycle 

which can be approximated by (see Figure 3): 

w=$ c (Pie1 
cycle 

+ 'i) ('i + 1 - vi) 3) 

Data from the two previous reads is used to add one term to the sum 

in equation 3, while the fast A/D is reading the current data into 

the third buffer. Actually, there is enough processor time between 

reads to calculate three different J'PdV values, using three different 
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pairs of transducers. In addition to these calculations, the data 

from each transducer is checked to see if it is a new maximum or 

a minimum for this pulse and, if so, the value and time are recorded. 

The coding for these calculations, controlling the fast A/D, and 

checking the eight bits for timing, has been carefully written to 

be as fast as possible in order to finish in 5C- $s. If any time 

remains at the end of the cycle, the processor loops on the clock 

until time to start the next 500 ms cycle. 

Step C is started 20 ms before the time that beam is expected to 

be injected into the chamber. The data from the fast A/D is switched 

to go into an array of 81 eight word buffers and the analysis 

described for step B above is no longer done between the 500 ms 

reads. This is done so that the processor can be used to check 

the eight bits for timing every 100 ps and to read two scalars which 

are intended to record hadron beam particles entering the chamber. 

It has the additional feature that the most interesting part of the 

eight channels of transducer data, i.e. at beam time +20 ms, is 

available for possible further analysis after the pulse is over. 

The time near to beam time is divided into early, beam, and late 

* gates. Under typical operating conditions, the bubble chamber is 

track sensitive to particles arriving from about 10 ms before beam 

time, to within a millisecond of the time the lights are flashed. 

Early tracks will have low bubble density and a large bubble size; 

late tracks will have small bubble size. Out of time tracks are 

hard to analyze, especially for cross section measurements. The 

hard wired bubble chamber gating can be set to inhibit taking any 

picture with early or late hadron beam particles: recording their 

presence with the computer and taking the picture provides 
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physicists with the option of excluding those pictures from parts 

of their analysis at a later stage. The signal from a coincidence 

of scintillation counters in the beam is fanned out and counted by 

two 100 MHz scalars in the CAMAC crate. One of these is read and 

cleared at the start of the early gate to record counts occurring 

since the last chamber pulse while the chamber was not sensitive. 

It is read and cleared at the start of the beam _ ;e for early 

counts, read without clearing in the center of the beam gate for 

counts in the first half of the beam gate, read and cleared at 

the end of the beam gate for the total number of counts in the 

beam gate, and finally read and cleared at the end of the late gate 

for late counts. The second scalar is used for more precise timing 

information. It is cleared at the start of the early gate, then 

read and cleared every 1 ms during the early gate. All the data 

from the early gate is packed into one computer word with the 

approl~G~~&e bit set if there were any counts during that time slot, 

and the bit cleared if there were none. During the first half of 

the beam gate, another computer word is used and the time slots 

are reduced to 100 vs. The last half of the beam gate uses 

another word and 100 1-1s intervals and finally a fourth word and 

1 ms intertial is used for the late gate. This process is duplicated 

for a second coincidence in the other two channels of the quad 100 

MHz scalar in the camac crate. The CAMAC input is done by direct 

commands to the CAMAC interface, rather than using the BISON library 

program KSOO1lll, in order to save time. 

Step D is started at beam time plus 20 ms. The read in and 

analysis of data is done exactly as during step B, which is 

described above. Step D should continue until the chamber pis,ton has 
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returned to its Stiitial p&G&ion. 

Now that all the data about the pulse has been read in, Step E 

is started. First, the A/D data stored in the 81 eight word buffers 

during step C is analyzed in the same fashion as was done in real 

time during steps B and D. Next, the scalar, timing,JPdV, and 

extreme pressure and stroke values, together with the times these 

extreme values occurred are converted 60 the proper form and stored 

in the output buffer. This includes converting extreme pressure 

and stroke values to physical units using calibration constants 

stored in the constants block and converting the [PdV's to joules 

using the calibration constants for the two transducers used for 

the integration. Times are recorded in 100 us intervals after the 

start expansion signal. If an event didn't occur, the data was 

too big, etc.; the appropriate error code is put into the output 

buffer in place of the data. 

The actual time of the beam timing signal, as recorded from 

one of the eight timing bits, is compared with the time expected 

as defined by the constants for this pulse number stored in the 

constants block. If necessary, a change is made to the constant 

controlling the length of step A. Likewise, the difference 

between the flash and beam times is compared and bbe length of the 

late gate adjusted if required. Other timing changes are not 

normally required, if necessary, they can be made manually in the 

constants block, via commands entered on the CRT keyboard. 

The time of the minimum value from one pressure transducer is 

selected to define when the minimum pressure occurred. The time 

intervals between beam and pressure minimum and between beam and 

flash are then calculated and stored in the output buffer. One 
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pressure transducer and one stroke transducer are selected and the 

difference between the appropriate extreme value and the static 

value used to calculate the pressure drop and stroke,which are 

stored in the output buffer. The selection of transducers is 

determined by entries in the constants block. The beam to pressure 

minimum time, pressure drop, and stroke, as well as one of the 

three JPdV values is sent to a numeric display in the rack above 

the expansion system controls. The data is sent to the display 

serially, using eight bits of a digital output module in the CAMAC 

crate. The last three data are converted to analog voltages and 

available for recording on a strip chart in the Control Room. The 
* pressure drop has turned out to be an accurate gauge of chamber 

sensitivity and is used frequently by the operating crew to maintain 

stable operating conditions during physics running and to quickly 

reestablish proper operating conditions after periods of downtime. 

In the latter case, 15 to 30 minutes of valuable beam time is saved 

because a test strip is no longer required before starting physics 

pictures. 

Event variables are then set for three high priority tasks which 

are responsible for furhher operations on the data in the pulse 

output buffers. Finally, the CAMAC device handler is notified that 

it has been interrupted and that it will have to repeat any routine 

I/O operation that it may have been handling. The interrupt 

operation is then ended and the processor released to continue its 

normal task processing under the BSX system; The three high priority 

tasks are responsible for: 1) writing the pulse data on magnetic 

tape; 2) writing it on disk, updating the partial sums (used to 

calculate means and standard deviations for each pulse number every 
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two hours) on the disk, and updating partial sums stored in memory 

for a few key parameters (used to calculate means every few minutes); 

3) updating a listing of pulse parameters on the memory scope (if 

requested) and/or a page listing of a subset of up to 15 pulse 

parameters on the CRT display (if requested). Since these high 

priority tasks operate on the data in the six pulse output buffers, 

they need not finish their work before the next pulse interrupt 

occurs. Up to five pulses interrupts from one accelerator beam 

spill are stored in the pulse output buffers and the three tasks 

will complete 

spill without 

* A special 

their work on them before the next accelerator beam 

losing any data. 

effort has been made not to require any action by 

the bubble chamber operators in order for the computer to correctly 

read and store the data from the pulse. All the control information 

needed by the program is stored in the constants block, the latest 

version of which is read into memory from the disk automatically 

when the online program is started up. This block is typically 

set-up at the start of a run by one knowledgeable person and requires 

a little modification during the run. The timing signals used 

(start expansion and beam times) are the same ones that the operator 

must set correctly for proper bubble chamber operation, whether or 

not the computer is running. The operator has no additional timing 

settings to make for proper computer operation. The data logging is 

automatic and available for future display, subject of course to 

the space limitations of the disk. Updating of the numeric display 

in the expansion control rack is also automatic. The display of 

more complete information is optionally available on demand. 
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VII. DATA STORAGE 
* In addition to small amounts of data storage in memory, the online 

program uses the disk to store large amounts of data which can be 

recalled quickly and the magnetic tape to store data permanently 

for later offline analysis. One large contiguous file (BCDATA) of 

4096 (256 wordl blocks on the disk is allocated for use by the 

online program. As shown in Table IX, this file is organized 

into sixteen 256 block groups. Fourteen of these groups are used 

to store various types of data about the bubble chamber. Each 

group is used as a circular buffer with the most recent data being 

written over the oldest data of that type: One group is used to 

store control tables, calibration constants, temporary results, 

list specifications and other information needed by the online 

progr=n I see Table X. Storage has been allocated so that all of 

the most recent data is available for a few hours, a less frequent 

sampling of the data is retained for a couple of days, and data 

means and standard deviations are available for three weeks. The 

16th group of 256 blocks is available for Future use. The Eemaining 

704 blocks on the disk cartridge hold the DOS monitor, DOS system 

programs PIP and VERIFY3, needed to transfer files between peripherals 

and to verify the disk file structure, and the load modules for up 

to three versions of the online program. Data is logged on the 

magnetic tape just after it has been read in by the online program 

in one long file. The online program automatically writes a 

standard PDP-11 file label at the start of each new blank tape. The 

file name includes a sequential serial number which is automatically 

incremented for each new tape. The creation date is also included 

in the file label. Next, the first 256 blocks (i.e. the first 
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group) on the disk, which contain the control tables, etc. are 

written on the new tape. This is done to provide a complete 

description of the data on the tape for the (future) offline 

analysis programs as well as to make a backup list of these 

control blocks which can be used to restore the file on the disk 

if necessary. If the program is restarted with a partially filled 

magnetic tape, operator commands are available to properly 

position the tape before data logging on it is resumed. 

All blocks in the file on the disk and records on the magnetic 

tape (except the file label record) contain 256 words and have the 

same identifying information in the first four words. Word 0 

contains a four bit code in bits 15-12 indicating what type of 

information is stored in the block, see Table XI. The 12 low 

order bits contain the block number, relative to the start of 

the 4096 block BCDATA file, on the disk where the information is 

stored. This is included to further specify the contents of the 

block and to make restoration of the disk file BCDATA from the 

magnetic tape easier, should this feature be required in the 

future. Word 1 contains the date and words 2 and 3 the time, in 

PDP-11 format8 , when the data was created or the control list last 

modified. Usually, the remaining words contain the data or control 

list, see Table XI for exceptions. 

Data blocks in all the data groups in Table IX, except the last 

ones for the values of pulse data, are stored within the group at 

a position determined by the clock task (see section X) based on 

the date and time that the read in of each data block began. If 

the online program was not running for some period of time, no data 



VII - 3 TM687 
2628.000 

will be read and no data will be stored in the relevant locations 

in the various groups. These locations will still contain earlier 

data. Before any data from these groups is used for a display, the 

date and time words (words 1, 2, and 3 in the data block) are checked 

to be sure that the data was indeed read in at the expected time. 

If this check fails,the error code for no data is output instead 

of the data, or if no data at all is available for a list, a no 

data error message is output on the CRT screen. 

The data storage for the values of pulse data (last entry in 

Table IX) is sequentially with the pulses as they occur and not 

time based. Therefore, no date-time checks, as described above, 

are made before the data is displayed. A binary search of the 512 

blocks is done during program start up to find the most recent 

data, and storage of the next two pulses will be in the next block. 

This means that the most recent 1024 pulses stored by the online 

program are available for display, even if the program has just 

been restarted. Blocks 3584 to 4095 are used as a circular buffer; 

if the previous two pulses were stored in block 4095, the next two 

pulses are stored in block 3584. 

During the start up phase of the online program, standard DOS 

program requests3 are used to find the disk address and length of 

the BCDATA file. These are transmitted to the subroutine which 

handles all disk input and output for the online program tasks. 

When a task needs a disk I/O operation, it calls this subroutine 

specifying the relative block number in the BCDATA file, the start 

address of the (256 word) block in memory to be used for the 

transfer, and either read or write as arguments using the DOS 

Fortran call convention3. The front end of this disk I/O sub- 
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routine is re-entrant and, if the subroutine is already busy for 

another task, will cause the task issuing the new request to go 

into a BSX wait until the subroutine is free. When the disk I/O 

subroutine is free, BSX will give control of the CPU to the highest 

priority task with a pending request. BSX can handle multiple I/O 

requests to the same device directly, but this would require more 

code (i.e. memory) in each task and would not honor the pending 

requests in order of their task priority. The disk I/O subroutine 

stores the relative disk block number in bits 11-O of the first 

word in the block (writes only), checks that the requested block 

is within the BCDATA file and issues a fatal error message if it 

is not, calculates the actual disk address, and uses the BSX QTRAN 

directive6 to start the transfer. The requesting task then waits 

until the transfer is complete (notification is via a BSX event 

variable) and then control is returned. The disk I/O subroutine 

requires 67 words of memory. 

When magnetic tape logging is active, program requests to log 

data are handled by a high priority task. This task is activated 

either by a pulse interrupt handler, or by a subroutine similar 

to the disk I/O subroutine described above. When activated, it 

searches the pulse output buffer control words for pulse buffers 

which have not been written on tape yet, writes those buffers on 

tape, and then marks them empty (in so far as the tape writing 

task is concerned). If a general request to write data on tape is 

pending, it will be accomplished now by the tape task and the tape 

output subroutine notified via an event variable. The tape writing 

subroutine and that part of the tape task in the main program 

require 233 words of memory. 

Tape positioning and tape label writing, etc., requires 1101 
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words in the first overlay. These functions are only needed occa- 

sionally, so putting the code in an overlay results in a net saving 

of memory. This code is rather longer than is absolutely necessary 

to satisfy two desires. First was to make it possible to resume 

data logging on a tape at the point where it was interrupted by 

power failure, program bomb-out, tape unit cleaning operation, etc., 

so that each tape would be full, instead of having a larger number 

of partially filled tapes. Fewer tapes means less cost, less 

volume required to store them, and less time and operator effort 

required to change tapes. The second desire was to make the tape 

handling commands as simple as possible while still providing 

sequential, DOS tape labels and reducing the risk of data loss 

through operator error. 

When the online program is started up, or when the operator 

enters a command to start logging data on the magnetic tape (after 

this feature has been inactive), the mag tape status register2 is 

tested and error messages written on the CRT terminal if the tape 

unit is not ready or there is no write ring in the tape. Once 

any such problems are resolved, the register is tested to see if 

the tape is at the load point or not. If the tape is at the load 

point (beginning), the tape unit is ordered to skip forward one 

record. If the tape is blank (new), this would normally result in 

a runaway tape unit, which would skip forward through the entire 

tape (about 10 minutes). To prevent this, the magnetic tape byte 

record counter is tested every 1.0 second and if it has not changed, 

a power clear command is issued to stop the tape. After one second, 

a fake "operation complete" interrupt is sent to the driver routine 

to reset it and the tape is rewound. Since the tape has been 



VII - 6 TM687 
2628.000 

verified to be a new blank tape, a file label record is written 

on it containing the current date and a sequential tape number. 

This sequence number was stored in the general constants block 

which was read in from disk block 0 earlier in the program start- 

up phase. The number in the constants block is now incremented 

and the updated constants block written back on the disk to be 

ready for the next new tape. Next, a general buffer is reserved 

and the first block in the BCDATA file is read from the disk into 

the buffer and then written out on the tape. This procedure 

continues until the first 256 blocks on the disk have been written 

on the tape, then the general buffer is released. Data logging 

on the new tape now begins automatically. 

If the original skip operation ended normally, the tape is 

rewound to the load point and the first record read and summarized 

by a message on the CRT screen. In the usual case that the record 

is a DOS file label, the CRT message includes the file name and 

creation date. The operator then has three options. If he changes 

the tape+, the program notes the not ready condition of the tape 

unit and automatically starts over again.with the procedure given 

in the previous paragraph. If he gives the command to overwrite 

the tape label and data, the program treats the tape as if it were 

originally blank and proceeds as outlined above. If he wishes to 

move the tape to the end of the recorded data, he uses the commands 

given below. 

If the tape was not at the load point when the online program 

was started-up or tape logging requested, the tape is backspaced 

one record using direct commands to the hardware registers. This 

special backspace is used to avoid fatal errors from the DOS driver 
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if the tape was positioned in the middle of the record. If the 

backspace reaches the beginning of the tape marker, the program 

then treats the tape as if it was originally at the beginning. 

Otherwise, the record is read from the tape and a summary message 

written on the CRT screen. In the usual case that it was a data 

record written by the online program, the message includes the 

ID, date, and time information from the first four words of the 

record, see Table XI. 

Once the summary message of the record has been written on the 

CRT screen, the operator has several commands available to position 

the tape and indicate where logging of data is to resume. The 

tape unit can be moved forward or backward a specified number of 

records. On forward moves, the program makes the checks outlined 

above for blank tape and stops on blank tape, on end of file (EOF) 

mark, at the end of tape or when the specified record count is 

satisfied. After either move command, the previous record on the 

tape is read, summarized on the CRT screen, and the tape positioned 

just after that record. When the operator has moved the tape to 

the desired position, another command starts the logging of data 

on the magnetic tape. Unless canceled by the operator, the first 

256 blocks from the disk are written on the tape before data logging 

is resumed. 

The default option for the skip forward command is for a very 

large number of records (more than the tape holds), so this one 

command alone is sufficient in most cases to position the tape at 

the end of the data previously written on it. If data was being 

logged over old data on a tape and no EOF mark was Put on the tape at 

the end of the new data, the operator must find this point by using 
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the tape positioning commands and studying the information in the 

summary messages. 

Once tape logging has begun, it normally continues until the 

end of the tape marker is reached. The program then backspaces tl ne 

tape, writes three EOF marks, rewinds the tape, and writes a 

message on the CRT scre requesting a new tape. When the new tape 

is loaded, the program will automatically start the procedure 

described in this Section. Commands are also available to manually 

start the end of tape procedure (to permit tape unit cleaning), 

specify no tape logging (if the tape unit ie down or for program 

del?ugging) , or to restore the disk control tables from the tape. 
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VIII. DATA DISPLAY 

Most data displayed by the bubble chamber online program is 

optional and requested by operator command. Since the code to 

make these displays is only needed when these requests are made, 

most of it is overlayed, in fact it makes up the bulk of the three 

overlay segments. The addition of more optional disp$ays and special 

optional analysis of data would be relatively easy, because addi- 

tional overlay segments can be added with little or no increase in 

memory requirements. Although the most recent data is kept in 

memory, most of the data available for displays is stored on the 

disk (917,504 words). Rates are not stored on the disk, but are 

calculated each time they are needed for a display. 

Much of the data display requires the output of alphanumeric 

characters on one of the four line output devices: the line printer, 

memory scope, CRT terminal screen, and Decwriter. This data is 

formatted using the Bison routine FMTPUT 10 which I have modified 

to insert a decimal point in the data if desired and print out an 

error code, see Table XII, if the data value is in the range 

1000008 to 1000078 instead of the actual value. By specifying the 

previously unused code 5 in bits 7-5 of the format input to FMTPUT, 

a signed decimal integer conversion with these features is done. 

The number $n bits 14-13 of the format specifies the number of 

digits to the right of the decimal point. The resulting displays 

show the data with decimal points in the usual, quickly understood 

format, while still storing the data as single precision integers, 

which is virtually required by the size and hardware of the PDP-11. 

The modified FMTPUT requires 471 words of memory. All requests by 

tasks to output a line of data are handled through a line output 
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control subroutine for several reasons. The subroutine reserves 

the line output device for that task for a preset time interval 

and puts tasks requesting the same device in the BSX wait state 

until the time interval is over. This prevents mixed lines of 

output for two different lists on one page, and also leaves 

pages of output on the memory scope for at least a minimum time 

so they can be examined. The subroutine inserts form feeds and 

title, date and time information if requested. Finally, since 

FMTPUT is not re-entrant, the subroutine will allow only one task 

at a time to use it. The subroutine uses the BSX QTRAN directive6 

to output the line after it has been formatted. The line output 

control subroutine requires 679 words of memory, which include 

line output buffers for the four devices. 

One principal means of displaying data is by a list of many 

different data points, all read in at (approximately) the same 

time. These lists can be output either on the memory scope for 

temporary use, or on the line printer for a permanent copy. The 

list can include rate information, based on the difference between 

data read some interval (15, 60, or 120 minutes) earlier and the 

values at the selected time, and expressed in units per hour. These 

lists are displayed on a relatively simple command typed on the 

control CRT terminal keybroad by the operator. The command consists 

of one or two letters specifying output on the memory scope or 

line printer, a list number, a letter specifying the type of data 

desired (C = latest read, A, Q, or M; see Table IX), and the 

desired time expressed in days ago, hour of day, and minute of hour. 

In the case of a request for pulse data, type A, the number of 

pulses ago is specified instead of the time. 
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The command is converted by the Bison program CICONV', the 

first overlay read into memory, and the command decoded and stored 

by code in the overlay. 

An event variable is set for the low priority lists task and 

the command task returns to wait for another command. The list 

routines occupy 591 words in the main segment and 1137 words in 

the first overlay. The bulk of the part in the main segment finds 

and reads the requested data blocks from the disk and calculates 

the ratesi It was put in the main segment because it is also 

used by the few variable summary code in overlay 2. The list number 

in the command specifies the disk location of the first list 

specifications block. A general buffer is reserved and the first 

list specifications block is read into it. The last eight words 

of this block contain data block codes which specify the data 

blocks needed for the list. These can be slow, fast, or pulse 

data, any specific block in the BCDATA file, or the data in the 

edit buffers (see Section IX). In the first case values, standard 

deviations, or (15, 60, or 120 minute) rates are also specified in 

the data block code word. The required additional number of 

general buffers is now reserved and the desired data is read into 

the general buffers. For requests for bubble chamber data, the 

data type, date, and time specified in the list command as well as 

the data block code word are needed to specify what data is needed. 

The date and time of these data blocks are checked and if they do 

not match the expected values, flags are set to output no data 

error codes in place of the data. Any desired rates are now 

calculated. 

The code words starting in word 5 of the list specifications 
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block are now scanned, the lines of the list constructed, and the 

list output line by line. Before the first line is written, the 

line output control subroutine is requested to send a form feed 

and title containing the current date and time to the device (which 

was selected in the operator command). The strings of list 

specification code words consist of a control word first followed 

by the required number of words specifying data location or 

alphanumeric characters to be output as titles. The control word 

is very similar to the format word needed by FMTPUT 10 to format 

the desired data, but some bit combinations which are unused by FMTPUT 

are used by the list routine to order special operations. The 

number and use of the words following the control word are 

determined by the repetition count and format code fields of the 

control wWdzr whi.ch, are the same as thre FMTPUT form& word definitions. 

Data location words specify one of the eight possible data blocks 

(defined by words 248-255 of the first list specifications block) 

to use and the offset of the desired data within that block. A 

zero control word ends the line on the list, and a second zero 

control word indicates the end of the list specification block. 

If word 4 of the specification block is zero, the list is complete; 

if the word is nonzero, that block is read in and used for continued 

list specifications. If the list was on the line printer, a two 

second timer is started and if no further lists to the line printer 

are begun in that time, the list task is re-entered and it spaces 

the paper forward 25 lines to move the printed text out of the toner 

tray. 

As pointed out in Section IV, the main motivation for using 

this method to display lists was to put the list specifications on 
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the disk, thus relieving most of the memory requirements for this 

job. Presently, there are 15 lists using 28 disk blocks for their 

specifications, but this can easily be increased without 

requiring any more memory. Another benefit is that new lists can 

be added and old lists modified while the online program is running, 

see ZLection IX. The data from the online program is so useful in 

operating the bubble chamber that the operators dislike any 

interruption, even for program improvements, so this feature is of 

real importance. 

Once the desired list at the selected time has been printed, 

the operator can use the advance command to print out the same list 

using data from the next (or previous) read interval. Optional 

arguments of the command allow skipping read intervals and specifying 

how many times the command is to be automatically repeated. 

Figures 4 and 5 show examples of bubble chamber data output 

with this list program. Figures 6, 7, and 8,also made with this 

program, show the data that is currently read into the slow, fast, 

and pulse data blocks. For the first two, the online program uses 

the same two or three letter plus number code to name indiwcors 

that are in general use at the 15' bubble chamber. 

The 15 lists currently implemented include seven which output 

data about the bubble chamber and its support systems and eight to 

give information about the set-up of the online program. Of the 

latter, three are used to give the read lists (Figures 6-8), four 

give a list of the limit checks which are presently active or 

acknowledged, and one gives a dump of the edit buffer. 

A special optional provision is made to output the list of gold 

chrome1 thermocouples on the memory scope each time the slow data 
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read in is completed (16 times per hour). This is used primarily 

during cooldown when this information is vital for the operator to 

correctly control the cooling rate of the glass bubble chamber 

windows. A similar provision is available to automatically list 

data taken every chamber pulse on the memory scope, but this is 

less useful. When the chamber is being double pulsed, there is 

insufficient time to print out all the data on the memory scope. 

From the data taken every pulse, the operator can select up 

to 17 data points to be output as a page (similar to pages in the 

beam line MAC system) on the CRT screen. Fourteen pages are 

possible, and this page display is activated by a one letter 

command followed by a page number. This command calls the first 

overlay into memory which then reserves a general buffer and reads 

the block of page definitions. The data point numbers (word offsets 

in the pulse data l/2 blocks) for the requested page are taken 

from the definition block and saved in memory locations within the 

main segment. The pulse ID blocks are then read sequentially into 

the general buffer and the output format (which contains the decimal 

point location, i.e., the scale factor) for the desired data points 

is also saved in the main segment. The 14 character title for the 

data point is taken from the ID block and written on the proper 

line on the CRT screen. Since this title is then stored in the 

CRT terminal memory, there is no need to save it in the computer 

memory. When all the ID blocks have been processed, the general 

buffer is released, a flag set to show that the page display is 

active, and the overlay is released. 

After every pulse of the bubble chamber, the pulse data display 

task is activated and will update the CRT page display. Using the 
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data point numbers and formats saved when the page was requested, 

this task deletes the seven characters on each line just after the 

title and then writes the desired data at the end of the line. 

After five chamber::pulses, each line contains the title of the data 

point displayed on that line and the five most recent values of 

the data point, earliest one on the left and latest one on the 

right. This gives the operator information on the pulse to pulse 

variation of the data and the CRT display is fast enough to output 

even multipulse data between accelerator cycles. As a special 

option, the hadron beam hits/misses vs. time can be displayed on 

the 18th line of the page; time increases from left to right and 

X's appear in time slots with at least one hit, see Section VI. 

The line after the normal data point displays is deleted before 

the line is written, so that several of these timing lines can be 

displayed with the one from the latest pulse at the bottom. 

Figure 9 is an example of this display, using simulated data when 

the bubble chamber was not running. 

As described in Section VI, four key chamber expansion parameters 

(stroke, /PV, pressure drop, and beam to pressure minimum time) are 

sent to a 16 digit display in the rack above the expansion system 

controls every pulse. The first 

converted to analog voltages and 

strip charts. 

three of these parameters are 

are available for recording on 

In addition to the lists, which display a large number of data 

points at one time, it is possible to display a summary of a few 

variabEes (up to 7) at many successive times. Frequently, knowledge 

of the time variation of a few variables is important in understanding 

some aspect of the bubble chamber operation. To obtain such a 
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summary the operator enters a command just like the list command 

described above with a special list number. The command is decoded 

by the same code in overlay 1 as was used for a list command. The 

tiem specified is that for the end of the summary and the default 

time is now. Since this would be the usual request, no time need 

be entered in most cases. 

After the command is decoded, overlay 2 is called and the code 

there reads in a block of information from the disk which contains 

the list of variables which were used for the last summary. The 

seven old variable definitions are output one at a time on the CRT 

screen as a command to define a variable for the summary list with 

arguments specifying the old definition (see Figure 10). This 

allows the operator to change the definition, but if no change is 

needed, he need only press the return key. Specifying the variable 

completely requires one letter to indicate the slow, fast or pulse 

data blocks, the data point number (see Figures 6, 7 and 8) and a 

three character code for value, standard deviation, or (15, 60 or 

120 minute) rates. Once the variables are specified, a line is 

written on the screen with the number of entries and the interval 

in minutes used before. Changes to these parameters can be made 

before the return key is pressed. If the interval is specified as 

0 minutes, the program will compute the minimum interval for which 

data is stored, using the first variable definition and the data 

type specified in the list command. Next, an event variable is set 

for the lists task and the command task returns to waiting for the 

next command. 

The remaining code is also in overlay 2 and runs on the lowest 

priority lists task in order not to interfere with the data read in 
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and logging functions of the online program. Abstracting the data 

from the disk blocks may take up to one minute if the maximum 

number of 256 entries is requested and data is needed from blocks 

in several different groups on the disk. First, the specified 

variable list is scanned and the required set of code words, 

identical to those stored in the last eight words of the list 

specification block, needed to obtain the complete list of variables 

is constructed. The output format and the information for a 20 

character title for each variable is read from the various ID 

blocks on the disk and stored in the same block as the variable 

definitions. Using the input arguments, the date and time for the 

start of the list and the interval between desired data is calculated. 

The subroutine in the main segment is then called to read the nec- 

essary data and calculate any required rates. This subroutine is 

the same one used for the list display and is described earlier in 

this Section. Since the subroutine may require up to three general 

buffers for each of the slow, fast, and pulse data types (if all 

were in the requested variable list), sequential calls are made 

for each data type and the desired data is abstracted after each 

call. This abstracted data as well as the date and time words from 

the block containing the first requested variable are stored in a 

general buffer. If the block of data containing the first variable 

was never read, zeros are stored in place of the date and time words 

to show that no data is available. This procedure is repeated for 

subsequent times as specified in the operator commands. When the 

general buffer is filled, it is written on the disk in the area for 

this type of data (blocks 131-142). The block of constants, which 
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now contains the variable definitions, titles, and formats for the 

new data, is also written back on the disk, 

Finally, the data for the summary is read back sequentially 

into a general buffer and the list output on the requested device. 

This step is skipped if the no list option was selected in the 

original command. In any case, the data summary on the disk has 

been updated and is now available for the graphical displays 

described below. 1244 words in the second overlay are required to 

make this few variable summary. Figure 11 is an example of such 

a summary. The actual commands used to make it are shown in 

Figure 10. 

Once the few variable summary list has been made, the data on 

the disk is available for plotting. Plots on the memory scope are 

made using the Bison subroutine PLOTA 12 . The operator enters a 

simple one letter command, followed by a one letter option and the 

variable number(s) which are defined when the few variable summary 

list was made. If the option or variables are not specified, the 

previous definition is used. Options are for one large line graph 

of a variable vs. time, with or without symbols plotted on the 

points and with optional error bars taken from a second variable. 

The latter option only makes sense, of course, if the plotted 

variable is a mean and the error bars are taken from the corresponding 

standard deviation. Also, four small line graphs of different 

variables can be put on the memory scope at the same time, either 

with or without symbols plotted on the points. A scatter plot of 

one variable vs. another can also be made. In this case, the 

coordinate pairs come from data read in at (essentially) the same 

time. Titles and tic values are also put on the graph. The hard- 
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4 ware and subroutine HCOPY' supplied by the computing department can 

be used to copy the graph from the memory scope onto the line 

printer, but resolution suffers somewhat in this this transfer. 

Figures 12-15 were made by the online program using this feature. 

The code to plot the graphs on the memory scope and make the hard 

copy is all in the second overlay and requires the remaining 2481 

words in that overlay. 

When the operator enters the command to plot on the memory 

scope, the second overlay is read into memory and the block 

containing variable definitions, the previous graph option and 

variables, etc., is then read from the disk into memory. The 

graph options and variables are updated from the command, if 

necessary, and the required three or four general buffers reserved. 

The data blocks written on the disk when the few variable summary 

was made are then read sequentially into one of these buffers and the 

required data for the graph is put into the remaining buffers in 

the proper format for PLOTA. One buffer contains the X coordinate, 

another the Y coordinate, and the third (if required) contains the 

corresponding error. The memory scope is then reserved, erased, 

and the X axis title written on the scope using the line output 

control subroutine described earlier in this Section. The remain- 

ing arguments are then set up, and PLOTA called to output the line 

graph, Y axis title, tic marks and labels. If symbols are requested, 

the arguments aremodified and PLOTA called again to put them on. 

If the option for four small graphs was selected, the above steps 

have output only the first of these. The read of the few variable 

summary disk blocks and general buffer fill is repeated for the 

second graph, arguments modified and PLOTA called again (twice for 
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symbols on the points) to plot the second graph. This is repeated 

for the third and fourth graphs. Finally, the data block with 

the updated graph option and variable numbers is written back on 

the disk and the ~eoeral. buffers released. 

On a command to make a hard copy, overlay 2 is read into memory 

and an event variable for the list task is set. The lists task 

then calls HCOPY to copy the memory scope onto the line printer. 

Since HCOPY was written with wait loops rather than interrupts to 

signal the end of each I/O operation, it is necessary that it runs 

an the lowest priority list task to permit the read in and data 

logging functions of the online program to continue without delay. 

It takes about 20 seconds to make a hard copy. 

It is also possible to make graphs of one variable vs. time 

directly on the line printer using the Bison program PLOTB?. The 

resolution of such graphs is considerably better than those made 

with the hard copy feature. The online program handles such 

requests in a way very similar to that used to make graphs on the 

memory scope, with the following exceptions. The code is in overlay 

3 and the entire overlay is needed to make the line printer graphs. 

The option to make four small graphs is not available or necessary; 

the operation can enter four commands if he requires a permanent 

record of four graphs. PLOTB was not written to make scatter plots, 

so this option is not available. This job is switched to the lowest 

priority task after the command has been decoded. This is necessary 

because the plotter driver or hardware supplied by the computing 

department does not currently work on PDP-11/20's, so I have written 

simple instructions, similar to those used in HCOPY, to transfer 

the data to the line plotter registers directly. The wait loops 
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tie up the task for the 20 seconds or more it takes to output the 

graph. Since the other tasks all have higher priority, this 

doesn't delay the read in and logging features of the online 

program. Another problem with PLOTB is that it requires a full 

character line for each X axis value, so a graph of all the data 

available (256 time values) requires five pages. Figures 16 and 

17 were made directly on the line printer by PLOTB and contain 

the same data as Figures 12 and 13. Note that the actual 

commands needed to make Figures 11, 12, 14, and 16 are shown in 

Figure 10. 
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* 

IX. DISK BLOCK EDITING 

Since the bubble chamber online program makes extensive use of 

control tables, constants tables, and list.specification blocks on 

the disk, some feature is necessary to enter and modify the infor- 

mation in these blocks. This could be theoretically done with a 

separate program, but there is a distinct advantage in being able 

to do disk block editing with the online program. The BSX task 

structure permits the disk block editing to be done by the online 

program with no interference to the read in and data logging 

functions of the program. A separate program would mean that 

these functions would not be done while the editing program was being 

run to edit disk blocks. The data from the online program is so 

useful in operating the bubble chamber that any interruption, even 

for program improvements, should be avoided if possible, so being 

able to edit control tables and list specification blocks online is 

of real value. More important still is that changing limit check 

'values, which means editing blocks on the disk, is frequently done 

by the operators and, therefore, should be as simple and quick as 

possible. A separate program would take longer and require more 

commands to be entered, compared to the present online editing. 

All the code for the editing is in the first overlay, requiring 

1573 words. For direct editing, the programmer first enters a 

command to assign one or two general buffers for editing. Two 

buffers are used as separate irnput and output buffers. In the editing 

process, selected data is taken from the input buffer, displayed on 

the CRT screen where it can be modified if desired, and then written 

into the output buffer. For most editing operations, only one buffer 

is needed and this is used as both the input and output buffer. 
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These buffers must remain assigned for editing until all operations 

are completed, but the editing programs need not remain in memory 

during this period. Thus, a graph or a few variable summary (which 

requires other overlays) could be made without spoiling the editing 

process. Any editing command will recall the first overlay to get 

the code required to complete the requested action. The secondary 

editing commands, described later in this Section, do use the same 

code as the primary editing command, so that their use would 

destroy any other editing job in progress. Another command exi 

to assign any location in memory as the edit buffer. This is 

used as an aid in debugging the program online. Since the editing 

code was put in the first overlay to save memory, only code in the 

main and first overlay segments may be examined and changed with 

the editing commands. When the programmer finishes his editing 

operations, another command will release the general buffers 

assigned above. 

Commands, specifying any relative block number in the BCDATA 

file on the disk as an argument, will read or write the selected 

block of data into either buffer. Before a write is done, the 

current date and time are entered in words l-3 of the block to 

show when it was last modified. If tape logging is active, the 

block is also written as the next record on the tape. This is 

intended to be used by the (future) offline analysis programs for 

an up-to-date list of the data being logged in each block on the 

tape. 

Another set of commands is available to take data from the 

input buffer, display it on the CRT screen in the specified 

format where it can be changed by the line edit features of the 
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modified KBIQ~T sub-program (see Section X), and write the modified 

data into the output buffer. In the case of octal or decimal 

format, five words at a time are displayed on the screen. The 

word offset of the first piece of data appears before the data. 

The line is actually a command (written by the computer to itself) 

to change the data in the output buffer, starting at the word 

offset given in the first argument, to the values given in the 

last five arguments. When the return key is pressed, the Bison 

routine CICONV' will be called to convert the command, so the full 

power of CICONV is available to specify the format of the arguments. 

Since the word offset where the changes are to be entered appears 

as an argument, it can be changed before the return key is pressed. 

This provides the means to easily shift data around in the buffer. 

The original command allows the programmer to enter the word 

offsets of the first and last words he wishes to change. If these 

specify more than five words, sequential lines of five words at a 

time will appear on the CRT screen until the requested last word 

has appeared. For long (~45) strings of ASCII (alphanumeric) 

characters, conversion is unnecessary and CICONV does not accept 

such strings, so the program uses these directly without calling 

CICONV. The command for an edit of ASCII characters must specify 

the word offset of the first character, the number of characters 

and optionally the number of times to repeat the command and the 

number of words to skip after the end of the previous string before 

starting the next one. Another command can be used to change one 

byte of data in the edit buffer. 

* One of the lists available (Section VIII) will dump the contents 

of the output buffer, in both octal and ASCII, on either the memory 
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scope or the line printer. The editing commands described above 

are very general and powerful, but require detailed knowledge of 

the program and disk block organization to use correctly. Therefore, 

a set of secondary edit commands have been written for general 

operator use to do a restricted set of editing tasks on the disk 

blocks. These commands call the primary edit commands, described 

above, when necessary. The arguments are easy to specify and require 

no detailed knowledge of the program or disk block organization. 

Currently, there are five secondary edit commands. Four of 

these are used to modify the control and constants tables on the 

dibk for one dataxpoint in either the slow or the fast data block. 

To specify which data point,the first two arguments after the command 

are, one letter to specify slow or fast data block and the data point 

number, see Figures 6 and 7. The command to adjust the calibration 

constants used in equation 1 for that data point requires either two 

or four additional numbers as arguments. The first of each pair of 

numbers is the correct output for a given signal and the second is 

the current output for that signal. If only one pair of numbers is 

specified, only the zero (a in equation 1) will be adjusted, if 

both pairs of numbers are given, both zero and gain (a, b, and s in 

equation 1) will be modified. The other three secondary editing 

commands concerning a data point require no additional arguments. 

Instead, they will output on the CRT screen current values from the 

control or constants tables on the disk, accept changes to that 

information, and make those changes on the disk when the return key 

is pressed. One command changes the data status byte, see Table VI 

and Section V; the second modifies the four limit checks for the 

specified data point, and the third changes the read in control list 
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word, format, name, number, units, and calibration constants for 

the data point. This third command is not intended for general 

operator use, but has been included to save the programmer's time 

and reduce the possibility of an error when the disk tables are 

modified to cause the online program to read in a new piece of 

data from an existing device. The fifth secondary editing command 

will change the variables displayed on the specified page for the 

CRT screen page display of data from the bubble chamber pulse. The 

page number to be changed is specified as the argument after the 

command. The data point numbers in the pulse buffer (see Figure 8) 

being currently displayed are written on the CRT screen, changes 

accepted, and the updated page definition block written back on 

the disk. 

All these secondary edit commands first call the code used by 

the primary edit command to reserve one general buffer. The arguments 

are used to determine which disk block is needed first and this 

block is read into the reserved buffer. The desired words, in the 

proper format, are written on the CRT screen for possible changes. 

After any changes are made and the return key pressed, the new 

information is put in place of the old in the edit buffer. In the 

case of the calibration command, this step is unnecessary; the 

arguments of the command are used to calculate the new constants 

which are written over the old ones in the edit buffer. If required, 

more lines are output to the CRT screen, etc., until all the 

necessary changes have been made in the edit buffer. The updated 

block, with the current date and time in words l-3, is then written 

back on the disk using the same code as the primary edit command. 

In the case of the command to set up the read in of a new piece of 
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data, three disk blocks must be modified, so the required steps 

are repeated until all blocks have been processed. Finally, the 

edit buffer is released, the first overlay is released, and the 

command task returns to waiting for the next command. 
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X. PROGRaM DETAILS 

A. Program Start Up 

Several jobs need to be done when the online program is started 

up, and the code required to do them is not needed at any other 

time. Such code has all been put in one area in memory and this 

area is used as a general buffer after the start up phase is 

complete. The start up phase also uses some code in overlay 1, 

so this overlay is called into memory at the start of the phase. 

Next, the interrupt vectors are set for the pulse, scanivalve, and 

DVM interrupts. The CAMAC crate controller is initialized according 

to the procedure suggested in reference 11. The DOS .INIT, .LOOK, 

and .RLSE programmed requests3 are used to find the disk address 

and length of the long data file, BCDATA, used by the online 

program. This information is stored in the disk I/O subroutine and 

used there before each disk data transfer to insure that the 

request is within BCDATA. Illegai requests result in a fatal error 

message, so that the online program cannot destroy other files on 

the online data disk cartridge or even on some other cartridge 

left in the disk drive by mistake. The .LOOK request requires an 

additional 512 words of monitor buffers which are released as soon 

as the request is over. Since most general buffers have not been 

assigned yet, these 512 words of memory will also be available for 

use as general buffers. 

The console switches are checked and, unless a special code has 

been set in the seitches, the memory used by ODT will be used for 

general buffers. Two general buffers have already been assigned by 

one of the program source files. The space between the start of 

BXSCAN (or ODT if it is required) and the top of the monitor buffers 
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is now assigned as general buffers, the starting address of each 

256 word buffer is stored in the buffer control subroutine, the 

flags for those buffers are cleared to show that they are 

available, and the count of available buffers is increased by the 

number of buffers assigned. Fourteen general buffers are assigned 

here, or less if the available free space in memory will no& allow 

that many. After buffer assignment, the DOS and BSX tables are 

modified to bold the new program low address and stack address. A 

message is then written on both the CRT screen and the Decwriter 

giving the current date and time, total number of general buffers, 

and the location and length of the BCDATA file on the disk. 

Next, the latest general constants block (mostly used for the 

pulse interrupt handler, Section VI) is read from block QI of 

BCDATA and the latest status byte block (for slow and fast data, 

Section V) is read from block 10. The 32 character title from the 

general constants block and the date and time it was last modified 

is written on the CRT screen. The subaddress to be displayed on 

the DVM and both thermocouple systems, when they are not reading 

data are also stored in the general constants block. Event 

variables are now set which cause the respective drivers to output 

these subaddresses. Finally, a binary search of the 512 block group 

on the disk holding data from the last 1024 chamber pulses is done 

to find the most recent block written there. The data buffer 

containing the next two pulses will be stored in the next block in 

the group on the disk and the display routines will use this most 

recent block number when displays of all pulse data are requested. 

This insures that the last 1024 pulses are always available for 

display, even immediately after program start up. Finally, now 



x-3 TM687 
2628.000 

that the general constants block has been read in, the mag tape 

logging task is requested. 

Once the above jobs have been completed, the memory area 

containing the code, formats, etc., used in the start up phase is 

released for use as a general buffer. Each task contains some 

initialization code, which is usually just to put the task in the 

wait state on the proper event variables. See reference 6 concerning 

the tasks for the standard I/O devices and below for the clock task 

which is more involved. 

B. Clock task 

On program start up, the clock task calls a subroutine which 

sets up several peripheral devices for the online program. The 

Bison program CKINIT8 is called to change the mode for the program- 

mable clock, direct the clock interrupts to the Bison interrupt 

handler, and cause these interrupts to occur every 4 second. I 

have modified CKINIT so that the clock runs at 10 KHz (instead of 

100 KHz) to simplify the coding in the pulse interrupt handler, 

see Section VI. The Decwriter keyboard, which is not used by the 

online program, is disabled and the CRT terminal keyboard interrupt 

is enabled. The fast A/D converter is initialized, the scanivalve 

interrupt enabled to the Bison interrupt and gate unit, and, if 

pulse data has been started, any pending pulse interrupt is cleared 

and then the pulse interrupt is enabled. All these changes must 

be undone before returning to normal DOS operation and another 

subroutine has been written to do this. Whenever control is to be 

shifted to DOS, either by typing control C on the CRT terminal 

keyboard or because of an error condition that must be reported, this 

subroutine is first called to switch the peripherals to their DOS 
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mode. When continue is typed on the Decwriter keyboard, the first 

subroutine is called to switch the peripherals back to the online 

program mode. 

The clock task then uses the current date and time words (see 

Table XI for the format) to calculate the (double precision) number 

of l/64 hour intervals since the start of the base year, which is 

specified in the clock task. The number of days in the base year is 

also specified, so that this calculation is done correctly for two 

consecutive years. This permits the number of l/64 hour intervals 

to be con%inuous over New Year (when the bubble chamber always seems 

to be scheduled to run), but the programmer should change the base 

year sometime during the second year while the chamber is not running. 

If the current l/64 hour number is different than the previous one, 

a new l/64 hour interval has begun and an event variable is set to 

read in the fast data block. The low order eight bits of the number 

are stored; these are the offset, relative to the start of the 

group for all fast data, where this new data is to be stored on the 

disk. Both the current and previous l/64 hour numbers are shifted 

right and this process repeated for the l/16 hour (slow data), & 

hour (quarter hour data), and two hour (mean and standard deviations) 

intervals. This procedure results in the data reads beginning at 

even intervals based on the time of day and data storage on the 

disk occurring with each group being used as a circular time based. 

buffer with the periods shown in Table IX. The first time through 

this code, after program start up, no event variables are set, so 

that all reads start at the beginning of the next preset time interval. 

The two hour event variable is set on program start up and the data 
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processing task (Section V) will examine the first partial sum block 

on the disk. If the date and time recorded there is within the 

current two hour period no action is taken, but if it is not, the 

means and standard deviations for the old two hour period are 

calculated, stored in the proper disk location, and the partial 

sum blocks cleared for the current two hour period. 

Next, the clock task processes the timers. These are set up by 

any task needing an event variable set after an interval of time. The 

task calls a subroutine specifying the event variable address and the 

number of + second intervals to wait before setting that event variable 

nonzero. The subroutine first checks the event variable address against 

those already stored in the currently active timers. If a match is 

found, the specified interval is used to reset that timer. If no 

match is found, the first inactive timer is set to the specified 

interval and the event variable address stored. When the clock task 

is executed (every % second), the timer intervals are checked and 

counted down by one if nonzero (i.e., active). If this countdown 

results in the interval becoming zero, the corresponding event variable 

is set nonzero. If a task were waiting on this event variable, that 

task would then be activated by the BSX supervisor when it became 

the highest priority task needing service. Currently, 15 timers are 

available, but this could easily be increased if necessary. The 

timers require 106 words of memory for the code and storage: addi- 

tional timers would require two more words each. 

The state of six bits on the Bison interrupt and gate unit input 

register are then checked. These indicate the open/closed state of 

six bubble chamber control Valves; five are val%es which maintain 

level in cooling loop heat exchangers and the sixth is the valve 
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shown in Figure 1 to let liquid helium into the magnet. The number 

of reads and the number of times each valve was found open are 

recorded in memory. One of the derived quantities subroutines for 

the slow data block (Section V) will compute the percent of time 

open for each valve, store the result in the slow data block, and 

zero the memory locations for the next interval. Some difficulties 

(probably a program problem) have been experienced in always receiving 

the interrupts for the scanivalve and the DVM, so a timer is set 

after each operation that should result in such an interrupt. If 

a real interrupt has not been received in this time, the clock task 

will issue a fake one. 

Finally, the clock task sends a pulse, via one bit of the Bison 

interrupt and gate control output register, to reset an external 

timing circuit. If this circuit is not reset for five seconds, it 

will cause a bubble chamber alarm indicating that the online program 

has bombed out. To encourage operators to get the mag tape logging 

started properly, this pulse will not be sent out until this has 

been done, so the bubble chamber alarm cannot be reset until the 

mag tape logging commands have been entered. The clock task then 

waits on the event variable which is set every % second by the clock 

interrupt handler. It then repeats the procedure which starts in 

the second paragraph of this subsection. 

C. Command Task 

A Qtran request6 is issued to input a line from the CRT terminal 

keyboard and the command task waits until the line is entered and 

the return key pressed. The Bison terminal driver' (KBIWlT) has 

been written to accept output lines (to the CRT screen), even with 

this input request pending, until the first character of the command 
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is entered. Once the return key is pressed, the command is converted 

by the Bison routine CICONV'. The @  symbol required by CICONV is 

entered in the buffer by the command task and echoed on the CRT 

screen by KBIBHT when the first character of the command is typed, 

but does not have to be typed by the operator. This was done to 

cut down the number of characters that the bubble chamber operator 

must type for a command. 

If CICONV detects an error in the command, an error message is 

written on the CRT screen to show what was wrong and the task waits 

for the next command. If the command is legal, CICONV calls the 

proper subroutine to carry out the desired action. Such subroutines 

generally make additional checks on the arguments: if some problem is 

found, they change one number in their argument list and the command 

task code will then write the proper error message on the CRT screen. 

Because so many of these subroutines are in the first overlay, CICONV 

has been slightly modified to call the first overlay into memory 

and reserve it before such subroutines are called and to release it 

after they return. Most of these subroutines require a very short 

time to complete the requested action. If a more lengthy job is 

requested, an event variable is set for the lists task and the 

command task returns to wait for another command (see Section VIII). 

Currently, 48 commands are defined, but only about 17 of them are 

used by the bubble chamber operators. 

D. Overlay Control 

Before entering code in one of the overlays, the task must put 

the desired overlay number into RO and call the overlay control 

subroutine. The front end of this subroutine is re-entrant and, if 

the overlay area is busy with another task, will put the task making 
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the new request in the wait state until the overlay area is free. 

When the overlay is available, the subroutine checks the overlay 

segment currently in memory and reads in the requested segment 

unless it is already there. A flag is set to show that the over- 

lay is busy and the subroutine returns control to the address on 

the top of the stack. This address was set by the task making 

the request and can be a location in the overlay. If the overlay 

control subroutine was called with the usual JSR instruction, 

control returns to the next instruction in the task, which may now 

call &&routines in the overlay segment. When the task has been 

finished with the overlay code, it calls a subroutine which sets 

the proper event variable showing that the overlay is free and 

returns. These overlay control subroutines require 52 words of 

memory. 

E. General Buffer Control 

Tasks requiring general buffers must first call the buffer 

control subroutine, specifying the number of buffers needed and 

address of a table for the buffer address as arguments. The front 

end of the buffer control subroutine is re-entrant and, if the sub- 

routine is busy with another request or there are not enough free 

buffers, it will put the requesting task into the BSX wait state 

on the appropriate event variable. If enough buffers are currently 

free, the subroutine searches the buffer flags, assigning the free 

buffers to the requesting task by making their flags busy and 

transferring their start addresses to the table specified in the 

subroutine call, until the request is satisfied. The count of 

currently free buffers is then reduced by the number reserved for 

for the requesting task and event variables set if 21, 22 l ==I 15 
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buffers are still free. Control is then returned to the issuing 

task, which then has exclusive use of the reserved buffers until they 

are released. 

When the task has finished using the buffers, it must call the 

buffer control subroutine again to release the buffers, specifying 

the same arguments as before, except with minus the number of buffers 

to be released. The subroutine searches its table of buffer addresses 

until it matches the first entry in the address table specified in 

the call, marks that buffer flag free and repeats until the specified 

number of buffers have been marked free. The count of free buffers 

is increased by the number of buffers released and the event 

variables described above are reset. Control is then returned to 

the task issuing the request. The buffer control subroutine requires 

120 words of memory, which includes the buffer flags and start 

address for 17 general buffers. 
F. CRT Terminal Driver 

The Bison routine KBIOHT~ has been-modified to drive the TEC 430 

CRT terminal used for the online program. The CRT terminal was 

acquired because it is much more convenient for editing lines of 

information as discussed in Section IX and makes the page display 

described in Section VIII possible. The Decwriter was then available 

to make a permanent log of limit checks out of range, Section V. The 

improved line editing features are also available for the commands 

entered by the bubble chamber operators who are already familiar with 

an identical terminal in the bubble chamber control room, used to 

broadcast bubble chamber status information on the neutrino lab TV 

system. Finally, the CRT terminal does not generate piles of paper 

containing commands which are usually of little.long term interest. 

Aside from changing the address of the hardware registers from 



x - 10 TM687 
2628.000 

those for the Decwriter to those for the CRT terminal, it was also 

necessary to make changes to the driver to allow the improved line 

editing features. An end of the line buffer pointer and a counter 

of the total characters on the line were added. To output a line 

of test for editing, the line is formatted as usual with FMTPUT 10 

but then the line feed character is removed and the count of 

characters put into the total character counter. The line is then 

written on the CRT screen in the usual manner. An input request is 

given to the CRT keyboard using the same buffer as was used for the 

output. K'B~~EB was modified so that this buffer would not be 

cleared by the input request if the total character counter was non 

zero. K.BEWYT then adds the total character counter to the initial 

buffer pointer for the end of buffer pointer. The character count 

and buffer pointer originally in KDI@RT are used to indicate the 

present position of the cursor on the CRT screen. A test was added 

to the keyboard interrupt handler in KBSIOHT to first check the 

input character and branch to a special code if it was a line 

editing character. 

The character 

will now increment 

pointer, be echoed 

to 

or 

on 

move the cursor forward or backward one space 

decrement the character count and buffer 

the 

be stored in the buffer. 

first characger or after 

characters typed with the 

CRT screen to move the cursor, but will,not 

Attempts to move the cursor to before the 

the last one are ignored. Normal 

cursor in the middle of the line change 

that character in the buffer, echo the character to make the change 

on the CRT screen to the position over the cursor, increment the 

buffer pointer and byte count, and advance the cursor one.space, 

Characters added to the end of the line do the above as well as 
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increasing the total character counter and end of line pointer. Delete 

or insert character codes result in an echo of that code to make the 

change on the CRT screen, the movement backward or forward of the 

characters in the buffer between the buffer pointer and the end of 

the line pointer with the corresponding adjustment to the total 

character count and end of the line pointer, and insertion of a 

blank or removal of a character at the buffer pointer position. The 

erase to end of line key is also enabled; this is done by echoing the 

control character to make the change on the CRT screen, setting the 

total character count equal to the character count, and setting the 

end of buffer pointer equal to the buffer pointer. Rubout results 

in the backspace and then delete character operations described 

above. Other editing characters (used for page editing) are ignored. 

When the return key is pressed, the space forward operations 

are repeated until the cursor is positioned just after the last 

character. The usual gRI;Q@P carriage return procedures are carried 

out to ,insert a carriage return and line feed in the buffer and 

notify the requesting program that the line input operation is 

complete. Note that this results in the entire line being transmitted, 

no matter where the cursor is positioned when the return key is pressed. 

If the line feed key is pressed, the erase to end of line operations 

are done first and then the control character is treated as if it 

were a carriage return. Control U results in moving the cursor to 

the start of the line, erasing the line on the CRT screen, clearing 

the input buffer, clearing both character counters, and setting both 

buffer po%nters to the start of the input buffer. This follows the 

usual DOS convention. 

If KDIDRT is entered with the total character count equal to 
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zero, the input buffer is cleared and both the buffer pointer and 

end of buffer pointers set to the start of the buffer. When the first 

character is entered from the keyboard, the CRT screen from the 

cursor position to the end of the page is erased to clear out any 

characters that may be displayed there (which would tend to confuse 

the operator). Once characters have been entered on the keyboard, 

the line editing features described above are available if needed. 

G. Changes Needed to BSX 

BSX will return control to the DOS monitor if one of a number 

of error conditions are found or a control C is typed on the keyboard. 

It is important that DOS will be able to run correctly in this case, 

either so that the online program can be continued after certain 

error conditions (i.e. a device not ready) are corrected, or so the 

online program can be restarted easily. Some features of DOS are 

useful in examining the state of the online program after certain 

errors, which is frequently of use in debugging new versions of the 

program. DOS will not run correctly unless the clock is returned 

to its DOS mode of operation and the decwriter keyboard enabled. 

(BSX already resets the interrupt vectors it modified when online 

program execution began). BXCODE was modified to call the subroutine 

to return peripherals to their DOS mode of operation before control 

is returned to DOS, and to call the subroutine to set the peripherals 

up for the online program again if the operator commands DOS to 

continue the online program. These two subroutines are described in 

Section XB, clock task. 

The DOS driver for the memory scope, in DOS version 9, issues 

a "VT not ready" message whenever the form feed character is sent 

to the scope to start a new page. This is done to permit the 
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operator to read the previous page and then type continue when he 

wants the new page. This online program saves pages on the memory 

scope for 10 seconds by other means (see Section VIII) and the 

above procedure, which halts online program execution and switches 

to DOS, is not acceptable for an online program. BXCODE was 

modified to check error messages before switching to DOS and if the 

message was "VT not ready" the error is ignored. A second such 

error with $ second is allowed to go through, because it would 

indicate a real problem with the memory scope. 

H. Memory Use 

Table XIII gives a list of the bubble chamber online program 

source files, including their functions and memory requirements. 

Programs written specifically for the bubble chamber, Bison programs 

written by the computing group at Fermilab, and DEC supplied programs 

are listed separately. The total memory requirement is larger than 

the memory on the computer; this is possible because the three 

overlay segments share the same area in memory. 

Table XIV shows the breakdown of memory use for different jobs 

when the online program is running without ODT. Four general 

buffers are not absolutely required, so 1583 words are available 

for program expansion. Of these, I have reserved 128 words for 

additional monitor buffers; perhaps this number could be reduced if 

required. Of course, additional overlay segments can be added 

which require little or no additional memory. 
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XI. UNUSUAL PROBLEMS 

A. Software 

In 1974, when the first version of the online program was 

written, minor changes had to be made to many of the BSX source 

files because #a newer version of the MACRO3 program was used in 

the DOS system for the bubble chamber computer. The problem was 

that the new MACRO program did not consider .CSECT names as .GLOBL 

definitions and I believe this error has been corrected in the 

current Bison library tapes. 

An amusing error was discovered in the Bison CKINTR8 routine 

which caused the online program to bombout at midnight on the 

computer's clock. The bubble chamber computer was nicknamed 

Cinderella 14 because of this error. It occurred because CKINTR 

did not actually change the date word until about seven minutes 

after midnight and a fortran call for the current data and time 

during this period would cause the program to bombout. Another 

problem was that CKINTR lost 22/60 of a second every 9.11 minutes, 

so the computer clock appeared to lose about one minute per day. 

Both of these errors were corrected and a copy of the corrected 

CKINTR given to the Computing Department. 

The Bison subroutine ISQRT 13 , which calculates square roots 

of integer double precision numbers was found to go into a loop 

if given a number greater than or equal to 268,435,456 (i.e. 228). 

This was solved by testing the number before calling ISQRT and if 

it was greater than or equal to the above value, putting the error 

code for data too big in the answer and not calling ISQRT. Since 

the online program only uses ISQRT to calculate standard deviations, 

numbers this large are of little interest. 
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When overlays were first attempted, the DOS monitor would bomb- 

out when trying to load the online program load module. After 

almost a week's worth of effort, it was discovered that DEC had 

published a patch to DOS version 9 (then in use at the bubble 

chamber computer) to correct this problem, which only occurred 

when trying to load programs longer than 16K from contiguous 

files (which are necessary for overlayed programs). After the 

patch was made, DOS version 9 worked properly and the bubble 

chamber computer has since been shifted to version 10 which does 

not have this problem. 

As discussed in Section VIII, the Bison PLOTB' program to make 

graphs on the line printer did not work correctly. The problem 

was found to be either in the Computing Department plotter driver 

or the plotter direct memory transfer interface on PDP-11/20 

computers. I solved the problem by using direct commands to the 

hardware registers to output the plot data. I believe that the 

Computing Department is working on a longer term solution to this 

problem. 

B. Hardware 

* Most hardware problems on the bubble chamber computer have 

been rather obvious and, after the problem is reported, the DEC 

repairmen can find the trouble and fix it quickly with little or no 

input from the programmer. However, about once a year, a problem 

develops which requires perhaps a week of effort by the programmer 

to prove that it is caused by hardware and then another week or 

two of the programmer's effort working with the DEC repairman to 

get the problem localized and repaired. I would expect that any 

small computer will require two or thcree weeks per year of effort 
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by an experienced programmer to diagnose and localize such 

problems. The computing Department personnel can frequently 

offer valuable advice, but they seem to have little time 

available to work on such problems. Most of the time must come 

from the programmer assigned to the machine. 

The first problem occurred shortly after the computer was 

installed. The computer would randomly bombout, even when running 

DOS systems programs, which should be well debugged. Intermittent 

problems are very hard to locate, and the DEC repairmen tended to 

blame noise on the AC power line. This cause was eliminated by 

borrowing several AC power filters and using them in the computer's 

power line. When the bombouts continued, even with the computer 

on filtered power, the repairman seriously went to work and 

finally fixed the problem. I must confess that I don't remember 

which component was a fault, but after the repairs were made, 

the filters were removed and the problem did not return. 

The next problem occurred almost a year later. When a block 

of data was written from memory to the disk, somet&mes a few words 

in the block in memory were zeroed. When the usual DEC diagnostic 

pro$rams failed to detect the problem, I wrote a short test program 

specifically to test for this error. After this, the DEC repairman 

found an obscure DEC diagnostic which would also detect the error. 

The cause remained difficult to locate; at one point the error 

would not occur if the expansion box was pulled out, but failures 

occurred when the expansion was returned to its normal position. 

Some unibus cables were replaced and better insulation put 

between the wire wrap pins and the expansion box top cover and the 

problem went away. We are not sure what the actual cause of the 
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problem was. 

The latest problem occurred last spring with the magnetic 

tape unit. Fatal error messages and program bombouts would 

occur when the tape was commanded to backspace. Occasionally, 

it would backspace to the beginning. Two hardware problems were 

finally found. A faulty capstan motor was not always running 

at constant speed and the tape unit electronics did not have up- 

to-date field changes. This latter problem was found by swapping 

electronics with another mag tape unit. Considerable programmer 

effort was required to test various combinations and fixes, since 

the normal DEC diagnostics would not detect the problem. After 

the motor was replaced and the electronics fixed, the errors no 

longer occurred. 
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* 

XII. FUTURE POSSIBILITIES 

Although the bubble chamber online computer system is now 

essentially complete and has become more and more valuable for 

bubble chamber operations during the last two years, one can 

always think of new features that could be added and would 

further improve bubble chamber operations. The addition of new 

lists, the read in of new data points, and the calculation of 

new averages, etc., can be done without changing the program 

at all, but by modifying the control blocks on the disk, as 

described in previous sections. As can be seen from figures 

6 and 7, there is room for 95 more pieces of data in the slow 

da&a block and 143 more in the fast data block. There are 

many extensions possible to the few variable summary feature 

described in Section VIII and some of these are outlined below. 

Using the computer for control functions and several other 

possible new features are also discussed. Which of these are 

actually done depends on the needs of the bubble chamber 

operating crew and the support given to this project by the 

Laboratory. 

The few variable summary (Figure 111, which gives the 

values of a few variables at a large number of successive times 

could be expanded to give maximum and minimum values, totals, 

and means and standard deviations of each variable during the 

time period covered by the summary. Much of the code required 

for this already exists in the program. A straight line least 

squares fit for each variable would give its average rate of 

change during the time period of the summary. A straight line 

fit of one variable vs. another would save much of the programmer's 
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time when, for example, calibrating the dynamic chamber pressure 

transducers against the precision static pressure transducer. 

Histograms of the data in the summary and the selection of which 

data is used for a display, depending on the value of another 

variable, would give, for example, separate histograms of the 

number of hadron beam tracks for the different pulse numbers 

when multipulsing. Such information would permit rapid feedback 

to the beam line and the accelerator and improve picture taking 

efficiency. It might be useful to calculate a new variable from 

two or more of the variables in the summary and be able to make 

displays of this new variable. The ability to delete unwanted 

entries from the summary before the displays or calculations are 

made would be of use. A more difficult project would be to set 

up a special, more frequent read in of a few variables and list 

or display them using the existing features for the few variable 

summary data. This might be useful, for example, to study the 

pressures in various vessels and the control valve positions with 

good time resolution during bubble chamber pressure test. It 

would be convenient to make it possible to automatically update 

any specific graph every time new data was read in. Since most 

of the code for these projects could be in any overlay segment, 

there is no basic difficulty in doing them, if enough programming 

effort is allocated to the project. 

Some additional programming effort on the graph displays 

might be worthwhile. The Bison plotting routines could be modified 

to use the format for the tic mark labels (PLOTA12) or the Y 

coordinate values (PLOTB5) which inserts the decimal point in the 

proper place (see Section VIII). Both routines already use 
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mm&J to format these numbers, but some study of these rather 

long programs would be necessary before this could be done 

properly. More such effort could result in date/time labels on 

the time axis of these graphs instead of the "intervals ago" 

labeling done presently (see Figures 12, 13, 14, 16 and 17). An 

effort is in progress to select intelligently rounded intervals 

for the graphs instead of simply using the maximum and minimum 

data values as is done presently. Both PLOTA and PLOTB are 

advertised to have this feature as an option, but neither one 

does it well enough to use. 

Page displays on the CRT screen for slow and fast data, 

similar to the existing feature for pulse data, could be added 

without too much programming effort. Because of the slower read 

in rat&e for these data, the initial request for such a page 

should read from the disk and display the last five readings for 

the selected data. Otherwise the operator would have to wait 

too long to get useful rate information. 

At present, the operator must specify a particular piece of 

data by its data block and data point number, see Sections VIII 

and IX. Usually he must look this up in the read lists, Figures 

6 and 7. A dictionary look up routine could be written which 

would accept the two or three letter plus number bubble chamber 

naming convention, search the slow and fast data ID blocks on the 

disk, and find the required block and data point number. Such a 

routine would require a few weeks of programming effort, but 

would save some operator time. 

The present time of the pressure minimum inside the bubble 
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chamber is currently just the time of the minimum pressure reading 

from the selected transducer. Since this minimum is rather broad 

and there is some noise on the signal, even after a filtering 

circuit, a better estimate of the time of pressure minimum could 

be obtained from a curve fit to pressure readings taken near 

beam time. These readings are stored in the pulse input buffers, 

see Section VI, but several weeks of effort would be needed to 

write and debug the fit subroutine using multiple precision integer 

arithmetic. If this is done, it would be almost necessary to be 

able to display the pressure data points and the fitted curve on 

the memory scope to check that the fit was being done correctly. 

Some bubble chamber data varies rather rapidly and sampling 

it about once a minute for the fast data block does not really 

give a good idea of its short term behavior. Such data could be 

read every % second by the clock task, just as the position of 

the cooling loop valves is already done, see Section XB, and the 

short term average stored in either the slow or the fast data 

block in the same way. Digital input or the fast A/D converter 

are the only devices on the system fast enough to input such 

data. The gauge which measures the return flow from the bubble 

chamber cooling loops is the most obvious example of an indicator 

which should receive such treatment. Few memory locations and 

only a small programming effort would be required to do this job. 

The intensity of the proton beam on the target for Neutrino 

experiments vs. the event rate in bubble chamber test strips has 

been frequently very important in monitoring the performance of 

the Neutrino beam line. The EM1 computer records this intensity, 

together with the bubble chamber picture roll-frame number, but 
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presently is not able to give an online listing of these data. 

In practice, the experimenters record the intensity by hand from 

the M?UC beam line computer display. If this intensity were 

recorded by the bubble chamber computer in the pulse data blocks, 

the few variable summary feature of the online program could 

provide such a listing and save the experimenter their hand 

recording job. Transmitting the beam on target intensity signal 

from the MAC system could require another CAMAC crate and modules 

which are rather expensive and new procedures to be learned by 

the bubble chamber operators to set up the MAC system data transfer 

correctly. Also, the signal arrives rather late after the pulse 

and handling the data correctly would require considerable re- 

programming for the bubble chamber online program. The transmission 
15 of the signal on a TV sound channel , already developed for other 

use8 at the bubble chamber, would be a cheaper and easier method 

to get this signal into the bubble chamber control roon, where 

the computer could read it in with the fast A/D converter. The 

hadron beam counts into the chamber for each pulse are already 

read into the computer, so such lists could currently be made 

for hadron experiments. 

As discussed in Sections V and X, the current date and time 

are used to label all data read into the computer. The slow and 

fast data blocks as well as all the means and standard deviation 

blocks are stored on the disk in locations depending on the value 

of this date and time. Therefore, it is vital that the correct 

date and time be entered into the computer each time that it rebooted. 

Errors in the past have caused complications and the loss of some 

data on the disk. Efforts are currently underway to read the control 
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room digital clock during the online program start up phase, and 

to reset the computer date-time words from this clock. In addition 

to reducing the possibility of incorrect dates or times, this will 

also speed up the process of restarting the computer. 

* It is expected that additional subroutines will be written 

to calculate new derived quantities for the slow and fast data 

blocks (Section V). Since data locations and constan,ts are 

stored in the contra& block&s) on the disk, very little memory 

space is required for such subroutines. One such subroutine 

could convert the level of a cryogenic liquid in a storage dewar, 

usually read as inches of water, into volume. Another could 

calculate compression ratios for each stage of the compressors 

in the bubble chamber support systems. When all the necessary data 

has been interfaced into the computer, these compression ratios 

would give an early indication of ring or valve problems in the 

compressor. Another such subroutine could be used to convert the 

nonlinear readings from vacuum gauges into linear pressures. A 

subroutine to calculate the volume of gas, in a tank, under 

standard conditions, from the temperature and pressure would be 

very useful. When the required data has been interfaced, an 

accurate inventory of helium in the system could be kept by the 

computer. This would give an early indication.of losses and could 

result in reduced helium purchases. I expect that other such 

applications will be found for the online computer. 

Currently, when the magnetic tape unit is cleaned or a tape 

fills up and must be rewound and changed, about ten minutes of 

data is not recorded for long term storage. However, this data 

is stored in various locations on the disk. W ith some programming 
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effort, the computer could keep track of which disk blocks have 

not been recorded on tape. When tape logging was resumed, these 

blocks could be read (one at a time) from the disk into the 

general buffer and then written on the tape. Once this feature 

becomes operational, further programming effort could give the 

bubble chamber operator online access to all the data stored on the 

magnetic tapes. W ith the chamber pulsing twice per accelerator 

cycle, almost 1% hours worth of pulse data is stored on the disk. 

During this time, the tape could be changed, if necessary, and 

repositioned to the start of the interesting data. The operator 

would then specify the type of data desired, and the computer 

would read the tape, select the specified data, and write it in 

the currently unused 256 block group on the disk. The tape would 

then be repositioned and data logging resumed, with the unlogged 

blocks from the disk going on the tape first. W ith some 

modification, the present display routines would then be used 

to study this special data. Up to a few months of programming 

effort would be required to do all this, and some careful 

consideration of actual experience with the online program should 

be made before deciddng whether or not to go ahead with this 

feature. 

It would require far less programming effort and less operator 

time to add a second RK05 disk drive to the system and use it to 

store additional bubble chamber data, particularly the all fast 

and all pulse data types. Another possible hardware addition 

would be a second multiplexed digital volt meter. The DVM is 

more accurate than the fast A/D and because of its several ranges, 

no amplifier is required for each signal. Because of the rather 



XII - 8 TM687 
2628.000 

slow settling time of a DVM, it would be better to add a second 

system, rather than just increasing the number of multiplexed 

inputs on the present system. The second DVM could probably 

eliminate the lower ranges of the present DVM $see Table V), 

and be made somewhat faster. In the longer range future, it may 

be necessary to add additional digital input; it should match 

the 16 bit PDP-11 words to reduce program complexity (memory 

required) and not be CAMAC, since those modules are rather 

expensive. 

MO offline analysis program for the bubble chamber data tapes 

has been written yet. This should not be too big a job, because 

it can be done in Fortran on one of the large Fermilab computers. 

The Computing Department already has subroutines to read tapes 

from PDP-11 computers. There are also extensive display programs, 

such as SUMX or gIg~~&~ in use on these computers. Putting these 

elements together should not require more than several weeks of 

programming effort, 

For the reasons given in Section IV, the computer system does 

not have any control functions as yet. During bubble chamber 

runs, when the control room is always manned, some control 

functions may be an aid to operator. Between bubble chamber 

runs, only a two man crew is present at the chamber and it would 

be of real value to reduce the time they must spend in the control 

room; thus freeing them for maintenance and development jobs. 

During these between run periods, large quantities of expensive 

neon-hydrogen or deuterium liquids are stored in dewars. Liquid 

hydrogen is transferred to condensers in these dewars and allowed 

to boil off to compensate for the heat leaks into the dewars. 
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Currently, the hydrogen comes from a storage dewar, and the air 

controllers that operate the transfer valves sometimes do the job 

rather inefficiently, resulting in a greater use of liquid hydrogen 

than is absolutely necessary. Using the online computer to control 

these transfers could potentially save liquid hydrogen and hence 

money. 

The large hydrogen refrigerator, used when the bubble chamber 

is running, is much too big to operate for only the small amount 

of liquid hydrogen needed to keep the storage dewars cold. The 

laboratory may acquire a much smaller refrigerator for this job. 

If this is done, it should be as automatic as possible, and using 

the online computer system as a part of the control system for it 

should be considered, starting with the earliest planning stages. 

During running conditions, one worthwhile control function 

for the computer would be to regulate the chamber temperature. 

The heat load on the chamber, which must be removed by the cooling 

loops, consists of a constant load and the heat caused by pulsing 

the chamber. Because of the large mass of liquid in the chamber, 

changes in temperature caused by changes in the pulse rate or 

depth do not show up on the vapor pressure thermometers until 

several tens of minutes after the change occurs. In the past, 

better chamber temperature stability has been achieved by the 

operator manually changing the cooling loop control set points on 

the air controllers when the pulse heat load is varied. Better 

temperature control results in better physics pictures, because 

bubble size and density are more uniform and because schlieren 

effects are minimized if there are no periods of excessive chamber 

cooling. The computer already measures the pulse heat load, so it 
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would be reasonably easy for it to use this information from the 

previous measurement intervals plus the difference between the 

current average chamber temperature and the desired temperature 

to automatically enter new set points into the air controllers 

for the next time interval. The time interval for the slow data 

reads (l/16 hour) would be just about right for this operation. 

The only new hardware required would be electrical to pneumatic 

converters for the set points and the programming changes would 

not be large, although some experimenting would be required to 

get the proper control equations. 

Another application of computer control would be to adjust 

the expansion system drive gas pressure to get the desired 

pressure drop during the pulse. Unlike the above case, the 

chamber pressure drop appears to remain constant if the expansion 

system control pressures remain constant. Therefore, I believe 

that what is really needed here are better gressnre regulators on 

the expansion system, rather than computer controll. The 

efficiency of the hydrogen refrigerator is improved slightly if 

the split of the warm compressor discharge gas to two heat 

exchangers is adjusted so that the low pressure hydrogen return 

and nitrogen vent gas temperatures are equal. The computer reads 

in both temperatures with the copper constantan thermocouple 

system, and could use this information to control the valve which 

splits the flow. However, experience shows that, once this valve 

is set properly, it need not be adjusted unless drastic changes 

are made in the refrigerator operating conditions. The option of 

calculating the temperature difference between the two thermo- 

couples, setting up a limit check and alarm on this difference, 
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and letting the operator adjust the valve himself would be nearly 

as effective and would require no program changes at all. 

* This section on future possibilities is certainly not a 

complete list of all that could be done with the computer system 

and is only intended to be a rough guide for the immediate future. 

I am sure that continued experience with the computer under 

actual running conditions will add new items to this list and 

that practical considerations will mean that some of the items 

will never be done. 



* 

XIII. CONCLUSION 

The online computer system described in this note has successfully 

met the need at the 15' bubble chamber for accurate data logging 

and display of this information. Knowledge of the time rate of 

change of various parameters is vital at a bubble chamber, and 

the system has been designed to provide this knowledge. When the 

computer system has been particularly successful in meeting some 

bubble chamber need, a short description appears at the appropriate 

position in the $@B$, and these have been flagged for general 

interest. Since bubble chamber operators are, in general, 

unfamiliar with computers, a special effort has been made to 

minimize and simplify the actions required by the operator for 

proper computer operation. A major problem with any small computer 

is to fit everything required into the restricted amount of 

memory available. This has been solved by making extensive use 

of the disk and by coding the entire program in assembly language. 

Much of the time invested in the program was needed to accomplish 

this, and a large part of this note has been used to describe 

these efforts in detail. 

* The computer system periodically reads in data about the 

bubble chamber, converts this data to physical units, and calculates 

additional data which depends on one or more of these data points. 

The present program will handle 512 such pieces of information. 

During every chamber pulse, data is read and processed by the 

computer. This results in an additional 125 pieces of information. 

All this data is saved on the disk for various lengths of time and 

written on magnetic tape for long term storage and offline analysis. 

Almost one million words of information on the disk are available 
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to the bubble chamber operator for displays on command. These 

displays may be lists or graphs; all of which are set up to include 

the time rate of change of the selected parameters. 

* I believe that some of the techniques, and perhaps even the 

actual code, developed for the bubble chamber online program, 

would be of use in other small computer projects at the Laboratory. 

A list of the most likely candidates follows, with the section 

reference in parenthesis. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

CRT terminal driver (X. P) 

Timers (X B) 

General buffers (X E) 

Control and constants tables on the disk (V) 

Editing of blocks on the disk (IX) 

List specifications on the disk (VIII) 

Start up code in an area which is then used as a general 

buffer (X A) 

8. Magnetic tape positioning and labeling (VII) 

9. Insertion of decimal points into integer numbers for 

output (VIII) 

10. 

11. 

Error codes stored in place of data (VIII and Table XII) 

Handling data as systemm&ically as possible (V) 

* Much of the bubble chamber online program is, in fact, a general 

data logging and display program. With rather minor modifications 

it could be used for similar applications at the experiment areas 

for beam line data, at the new helium liquifier plant, or perhaps 

at the accelerator. Tables I and III list what hardware would be 

required, but data input devices would be rather different for most 

of these possible applications. In fact, most of these would 
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probably use a data transfer from an existing computer system 

(i.e., the beam line MA!! systems). 

Some information about my programming experience with this 

system may be of interest to anyone planning-a small computer 

project. Because of the memory limitations discussed in Section 

IV, the final version of the program is written entirely in 

assembly language. A novice assembly language programmer, even 

one with considerable Fortran experience, will require three to 

six months of full time practice to become reasonably proficient 

(i.e. greater than 50 % of his potential rate) in writing and 

debugging such code. If he spends less than half time on this, 

the initial period will tend toward the upper limit of six man 

months. One estimate is that a good, experienced assembly 

language programmer will generate only three to five lines of 

code per hour. This estimate includes the time to plan the 

program, write the instructions, enter them into the computer, 

and debug the program. Code which is not used in the final program 

is not included in the yield. 

* I estimate that I have spent 15 man months on the program, 

spread out over a two year period. Deducting three months of 

learning experience leaves 2,000 hours of productive programming. 

The programs listed in Table XIIIA require 16,000 words of 

memory, so I managed to fill eight words per hour. PDP-11 

instructions require onei two, or three words of memory with the 

average between 1.5 and two. This gives a net yield of four to 

five instructions per hour. The programs in Table XIIIA contain 

11,000 lines. Perhaps 10% of these are comments and other non- 

code generating lines, so this estimate also gives five lines of 
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code per hour. 

Depending on ones other duties and how much already existing 

code can be used, programming a small computer can easily take two 

or three calendar years. Because of the learning curve and the 

need to write certain genera& routines at the beginning, the 

usefulness of the programming effort during the first year can 

appear quite small, Some Fortran programs can be us&d during 

this period to make the computer do a few jobs, and this was done 

on the bubble chamber system. Because of memory limitations, the 

functions of these Fortran subroutines were later coded in assembly 

language. I would be happy to discuss interesting aspects of the 

bubble chamber system with anyone planning a small computer 

project at the Laboratory, and I urge any Laboratory Physicist 

who does not have a permanent appointment to talk to me before 

committing himself to such a project. 

Hsi Feng has been responsible for much of the hardware, from 

planning through the commissioning of the special hardware devices 

(Table III), which has been vital to the success of this project. 

Charles Mangene has done much of the- work necessary to interface 

the special devices to the computer. Many members of the bubble 

chamber operating crew have helped to interface bubble chamber data 

to the computer and contributed valuable suggestions. Jim Early 

has assisted on several of the recent program improvements and 

has taken over the computer system. 
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* TABLE I - HARDWARE SUPPLIED BY FERMILAB COMPUTING DEPARTraENT - 

MANUFACTURER 

DEC. 

DEC 

DEC 

DEC 

DEC 

Datacraft 

DEC 

DEC 

DEC 

DEC 

DEC 

DEC 

DEC 

Versatec 

DEC 

DEC 

. DEC 

Tektronix 

Kinetic Systems 

Fermilab 

DEC 

MODEL 

PDP 11/20 

KWll-P 

BM792-YB 

LA30 

TCll 

TU56 

TMll-A 

TUlO-EA 

RKll-CA 

RKO5-AA 

200A 

AAllA 

AAllD 

BA614 

6I3 

KSOOll. 

DR11-G 

DESCRIPTION 

Central Processor 

Extended Arithmetic Element 

Programmable Real-Time Clock 

Auto Loader 

8K Memory 

20K Memory 

Decwriter terminal 30 characters/ 
second 

Dee tape controller 

Dual Dee tape drives 

Magnetic tape controller 

Magnetic tape transport, 9 track, 
45 ips, 800 bpi 

Disk controller 

1.2 M word cartridge disk drive 

Printer/Plotter 600 lines/minute 

Tektronix scope control 

D/A subsystem for above 

D/A converter (2) for above 

Storage scope 

CAMAC Crate Interface 

Bison Interrupt and Gate Control 

General purpose interface for above 



Blocks* 

112 

4,800 

1,156 

~21,000 
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TABLE II - STORAGE DEVICES 

DEVICE 

Memory 

Disk (RKll, RKO5) 

Two Dectapes (TCll, TU56) 

Magnetic Tape (TMll, TUlO) 

* 1 block = 256 (16 bit) words 
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* TABLE III SPECIALIZED HARDWARE ADDED FOR THE -- 
151V BUBBLE CHAMBER COMPUTER SYSTEM 

MANUFACTURER MODEL 

Date1 Systems System 256 

Date1 Systems 2561-PDP-11-l 
Date1 Sq7stems 2561-PDP-11-2 

TEC 430 
DEC DLllE 

Data Precision 3500 
Fermilab -- 

DEC DRll-C 
Scanivalve SSS 64 XZBM 

Standard Engin- 
eering 1410 

Jserger OR 

Jaesger IB 

Lecroy 2550B 
Jordway 70A Al 
Fermilab -- 

Fermilab -- 

DESCRIPTION 

Fast A;%D with 128 differential 
inputs (inc. 8 samples & hold) 
and 8 D/A outputs 
Register interface for above 
Direct Memory transfer inter- 
face for above 
CRT Terminal 
Interface for above 
Digital Voltmeter, 5 l/2 digits 
Multiplexed input for above 
Interface for above 
Pneumatic Multiplexer for 3-15 
psi signals 

CAMAC Crate 
CAMAC 48 Bit digital ou@put 
module (4) 
CAMAC 48 Bit digital input 
module (8) 
CAMAC quad 100 MHz scalar module (2) 
CAMAC crate controller 
Computer controlled addressing 
for the gold chrome1 thermo- 
couple system 
Computer controlled addressing 
for the copper constantan ther- 
mocouple system 
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* TABLE IV GENERAL DATA DEVICES - 

DEVICE NUMBER DESCRIPTION 

Gold Chrome1 Thermocouple System 

Copper Constantan Thermocouple System 

Digital volt meter 

Reserved for future DVM use 

Fast Analog to Digital Converter 

Air logic system Scanivalve 

Not Used 

100 

100 

64 

--- 

128 

64 

--- 

CAMAC digital input see text 



DVM SUBADDRESS 
(octal) 
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TABLE V DIGITAL VOLTMETER RANGES - 

oxx 

2xx 

3xx 

lxx 

LEAST COUNT' FULL SC2iLE 
(l-w) (volts) 

1000 $ 11.999 

100 3.2767 

10 0.32767 

1 0.032767 
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TABLE VI SEQW AND FAST DATA STATUS BYTE CODES ----- 

DATA STATUS BYTE RESULT 

0 

1 

Data point is not read in (no data 
error code is put in its place) 

Data point is read in but no con- 
version to physical units is done. 
The raw data value is transferred 
to the final buffer, but it is not 
included in the futher analysis 
(derived quantities, partial sums 
or limit checks) 

All normal processing steps are done 
on the data point, exeept no limit 
checks are made. 

All processing steps are done on 
the data point. 
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TABLE VII DISK BLOCKS USED -- 

# OF BLOCKS USE -_-- 

6 Store partial sums N (1 word), C x (2 words), 
C x2 (3 words). 

9 Limit Checks 

6 ID and format 

TO DEFINE ONE BLOCK OF GENERAL DATA - - 

STRUCTURE(words used for 
each data point) 

1 Read in control list High byte= device number 
(Table IV) 
low byte = subaddress 

4 Convert raw data Control word,b,s,a (equ- 
to physical units ation 1) 

1t Calculate derived String for each operation: 
quantities subroutine number, output 

location, input locations 
or constants, fl. 

Control word, 4 sets of 
lower and upper limits. 

Format, label number, label 
name (4 ASC II char.), units 
(4 ASC II char.) 
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BIT 

0 

1 

2 

3 

4 

5 

6 

7 

TABLE VIII EVENTS DURING 
FOR WHICH TIMING IS - 

EVENT 

CHAMBER PULSE 
RECORDED 

Beam for A (Hadron) Experiment 

Beam for B (Neutrino) Experiment 

Light Flash Trigger 

Data Box Trigger 

Camera Trigger 

Latch Valve open/closed 

Recompression Valve open/closed 

Expansion Valve closed (Open is start of 
timing measurement). 
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* TABLE IX ORGANIZATION OF THE DISK FILE BCDATA - ---- 

RELATIVE BLOCK USE TYPE 
NB&IBERS 

o-255 

256-511 

512-767 

768-1023 

1024-1279 

1289-1535 

1536-1791 

1792-2042 

2048-2303 

2304-2559 

2560-2815 

2816-3071 

3072-3327 

3328-3583 

3584-4095 

Control Tables, etc. 
(See Table X) 

UNUSED 

Means, slow data 

Std. Dev., slow data 

Means, fast data 

Std. Dev., fast data 

Means and Std. Dev. 
Pulse # 0 

Means and Std. Dev. 
Pulse # 1 

Means and Std. Dev. 
Pulse # 2 

Means and Std. Dev. 
Pulse # 3 

Slow Data 

Fast Data 

Slow Data 

Fast Data 

Pulse Data 

-- 

-- 

M 

M 

M 

M 

M 

M 

M 

M 

Q 

Q 

A 

A 

A 

DATA DATA 
STORED BETAliNED 

-- 

-- 

2 hrs. 

2 hrs. 

2 hrs. 

2 hrs. 

2 hrs. 

2 hrs. 

2 hrs. 

2 hrs. 

-- 

-- 

512 hrs. 

512 hrs. 

512 hrs. 

512 hrs. 

512 hrs. 

512 hrs. 

512 hrs. 

512 hrs. 

l/4 hrs. 64 hrs. 

l/4 hrs. 64 hrs. 

l/16 hrs. 16 hrs. 

l/64 hrs. 4 hrs. 

PULSE 1024 Pulses 
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BLOCK 
NUMBER(s) 

pl 

l-9 

10 

11-20 

21 

22-25 

26 

27-32 

33-41 

42-47 

48-50 

51 

52-55 

56 

TZiBLE & ONLINE PROGRAM CONTROL TABLES, ETC 
STORED ON THE DISK --- 

DESCRIPTION - FUNCTION 

6 Partial sums to calculate 
slow data means and standard 
deviations 

1 First block of control strings 
to calculate fast data block 
derived quantities 

1 Latest general constants (read 
in during program start up) 

9 Other versions of general 
constants 

1 Latest general data status 
bytes (read in during program 
start up) 

10 Unused, intended for other 
versions of status bytes 

1 Slow data read in control list 

4 Conversion of raw slow data to 
physical units 

1 First block of control strings 
to calculate slow data block 
derived quantities 

Slow Data limit checks 

Slow Data ID and Formats 

unused 

Fast data read in control list 

Conversion of raw fast data to 
physical units 
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Table X Con't 

BLOCK NUMBER 
NUMBER(s) OF BLOCKS 

57-62 6 

63-71 9 

72-77 6 

78-80 3 

81-92 12 

93-99 

100 

1@&105 5 

106-129 24 

130 1 

131-142 12 

143-185 43 

186-199 14 

200-249 50 First list specification blocks 

250-255 6 Unused 

7 

1 

DESCRIPTION-- FUNCTION 

Partial sums to calculate fast 
data means and standard deviations 

Fast Data limit checks 

Fast Data ID and formats 

Unused 

Partial sums to calculate pulse 
data means and standard deviations, 
three blocks each for pulse num- 
bers 0,1,2, and 3. 

Unused 

Contents of CRT screen pulse 
display pages 

Pulse data titles and formats 

Unused 

Few variable summary parameters 

Few variable summary data 

Unused 

List specification continuation 
blocks 
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TABLE XI ORGANIZATION OF THE 256 WORD BLOCKS - e-p- 

A. All blocks contain: 

1. Word 0 

a) l Bits 15-12, Code identifying t$zpe of 
information 

Code (Octal) Meaning 

00 Control tables, constants tables, etc. 

06 Means and Std. Dev. of slow data 

07 Slow data 

10 Few variable summary data 

12 Means and Std. Dev. of fast data 

13 Fast data 

16 Means and Std. Dev. of pulse data 

17 Pulse data 

b) l Bits 11-O. Block number:, relative to the 
start of BCDATA, where the information is 
stored on the disk. 

2. Word 1. Date = (Year - 1970)* 1000 + day of year 

3. Word 2. High order time word 

4. Word 3. Low order time word, where seconds since 

miijEjgrgHf = - 1 
60 

6 
HTW * 32,768 + LTW 

1 
5. Unless otherwise specified the remaining words 

contain the data, control tables,etc. 
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Table XI Can't - 

B. Pulse Data 

1. Words 4-128. Data from one pulse 

2. Words 129,130. Time of next pulse 

3. Words 131-255. Data from next pulse 

C. Means and Std. Dev. of Pulse Data 

1. Words 4-128. Means 

2. Words 131-255. Std. Dev. 

D. Control String to Calculate Derived Quantities 
and List Specifications 

1. Word 4. Link to next block 

a) l Nonzero. Block number, relative to start of 
BCDATA, to use next 

b) l Zero. This is the last block to use for this 
operation 

2. Words 248-255. For the first list specification 
block only, these words contain data block codes 
specifying what data is to be used. 
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TABLE XII ERROR CODES+ 

ERROR CODE 

"0 

MEANING 

No data...Bata was not read 
or inputs for the calculation 
were not available 

*1 Data was too big 

*2 Data was too small 

"3 Bad data from device 

*4 CAMAC error 

*5 Computer did not have control 
of device subaddress. 

*6 Read in overrun. Not enough 
time to read data 

*7 Control table error 
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1. 

2. 

FILE NAME MEMORY WORDS -- 

BCTAB.MAC 957 

AUTC.MAC 285 

3. CKS.MAC 42 

4. 

5. 

OUTCON.MAC 679 

PDP.MAC 697 

6. 

7. 

8. 

9. 

10. 

MTR.MAC 233 

SDR.MAC 723 

LISTS.MAC 591 

DATAP.MAC 1,238 

DEV.MAB 703 

TABLE XIII ONLINE PROGRAM SOURCE FILES 

A. Programs Written by the Author Specifically for 
the Bubble Chamber System 

FUNCTION 

BSX task table, clock and 
command tasks 

Driver to read the gold chr- 
omel thermocouple system 

Prevents more that one task 
from using KSOOll, repeats 
operation if KS0011 inter- 
rupted 

Control of output to alpha- 
numeric line devices 

Task for real time display 
of pulse data, control of 
general buffers 

Portion of mrq tape control 
task in main segment 

Task to read in slow data 
block 

Portion of output list task 
in main segment 

Task for analfsis of slow and 
fast data; @axcQ$ae@s means 
and std. dev. for all data 
blocks every two hours 

Drivers for DVM, fast A/D 
CAMAC digital input and 
Scanivalve 
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TABLE XIII Can't 

FILE NAME -- MEMORY, WQ:mS FUNCTION 

JJ.. PAP.MAC I, 882 Pulse interrupt handler, 
reads pulse data 

12. PWP.MAC 579 Task to output pulse data 
to disk. Also contains the 
special start up code whose 
memo:+ is than .uaed as a 
general buffer 

13. DFIOWF.MW 136 

14. Dl.MAC 

15. CUTC.MAC 

16. FDR.MAC 

17. DKEDIT.MAC 

18. CMDS.MAC 

19. LOV.MAC 

20. FVS.MAC 

Driver to output (only) 
on the Decwriter, d&rived 
from &ZGQ@T. 

148 Disk input-output control 
subroutine, overlay control 

264 Driver to read the copper 
constantan thermocpuple 
systdm 

544 Task to read in fast data 
block 

1,799 Editing of control and con- 
stants tables on the disk, 
S&k .upt :a$ .p~;l-!s.@ dgs@ap 
pages on the CRT (in over- 
lay 1) 

1,185 Misc. commands, g-&n&r 
of mag tape control task 
(in overlay 1) 

1,137 Remainder of list task 
(in overlay 1) 

1,700 Makes the few variable 
summaries, set up calls 
to PLOTA for graphs on memory 
scope, and calls HCOPY 
(in overlay 2) 



TM687 
2628.000 

TABLE XIII Con't 

FILE NAME MEMORY WORDS -- 

OIL. GPRINT.MAC 685 

B. Bison Programs Which Have Been Moderately Modified 
for the Bubble Chamber Online Program 

23. FMTPUT.MAC 

694 

471 

Driver for CRT terminal7 

Formatter for line alapha- 
numeric outputlO 

24. BXSCAN,etc 1,370 

25. 117 

26. CI.GOW~FA& 246 

27. KSOOll.PAL 296 

28. rFlFINKT. ,;eEtxz 609 

130 

30. Bcmxp3 .-PAL 

31. PLOTA.PAL 

50 

1,351 

32. HCOPY.PAL 114 

C. Bison Programs Used With Little or no Modification 

FUNCTION 

Sets up calls to PLOTB 
for graphs on the line 
printer (in overlay 3) 

BSX supervilSOr, including 
links to standard devices6 

Clock interrupt set up.and 
handler10 

Command interpreter9 

CAMAC driver"' 

Subroutines used by PLOTA, 
mostly in overlay2 

Calculates interger square 
roots 

Converts BCD to binary 

Elatzsz graph6 on the. 
memory scope (in overlay 2)12 

Transfers graph from the 
memory scope to the line 
printer (in overlay 2J4 
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TABLE XIII Con't 

FILE NAME MEMORY WORDS FUNCTION -- 

33. PLOTB.PAL 3,284 Plots graphs on the line 
printer (in overlay 3) 

D. DEC DOS Programs3 

34. ODT 1,584 Program debugging, space 
used for general buffers 
unless ODT needed 

35. $LOAD,etc 292 Read in overlay segments 

36. ---m--- 2,655 Resident monitor 

37. ----m-w 1,353 "Monitor buffers", mostly 
device drivers 

E. Large Buffers of DPta Storage (not included above) 

38. BBCD 

39. TCDAT 

40. PDP.MAC 

41. PAP.MAC 

42. SDR.MAC 

43. ----m-w 

264 Constants and control 
for PAP, general con- 
stants 

512 Latest values, slow and 
fast data blocks 

512 Two general buffers 
(available at program 
start up) 

1,440 Input and output buffers 
for pulde data 

256 Status bytes for data in 
slow and fast blocks 

< 3,584 Up to 14 general buffers 
assigned at program start 
up 
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TABLE XIII Can't 

TOTALS 

A 16,207 
B 1,165 
C 7,567 
D (Less ODT) 4,300 
E 6,568 

TOTAL --B--w-- 35,807 
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* TABLE XIV MEMORY USE FOR ONLINE PROGRAM '@JJ!fE~ -- -- 
RUNNING WITHOUT ODT (NUMBERS REFER To ENTRIES IN TABLE XIII) - - 

MEMORY WORDS USE 

2655 DOS monitor (36) 

1353 Monitor buffers, mostly device 
drivers (37) 

2345 BSX supervisor, including task 
table, links to drivers, and spe- 
cial drivers 6ar CRT termiznal and 
Decwriter (1,13,22,24) 

4121 Overlay area. Display, disk block 
editing, mag tape in-ktFalizati.on, 
misc. commands (OV1:17,18,19), 
(OV2:20,28,31,32), (OV3:21,33) 

4486 

5043 

591 

1199 

619 

556 

Read in, analysis, baggAng, and 
real time display of pulse data 
(5,11,12,38,41) 

Read in, analysis and logging of 
fast and slow data, including 
device drivers: (2,3,7,9,10,15, 
16,27,29,30,39,42) 

Portion of list task in main seg- 
ment, mostly to find and read in 
desired data from disk. (.Hj 

Control and formatting for line 
alphanumeric output devices (4, 
23,28) 

Command input and conversion 
(1,261 

Clock task and clock interrupt 
handler (1,251 
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TABLE XIV Con'@ 

MEMORY WORDS 

373 

67 

233 

120 

4352 

559 

USE 

Overlay control and read in (14,351 

Disk I/O control (14) 

Portion of mag tape task in main 
segment (6) 

General buffer control (5) 

17 General buffers (12,40,43) 

Unused memory 

28692 Total (=28K) 
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FIGURE CZXPTIONS 

1. Schematic d&agram of the liquid Helium flow to the superconduct- 

ing magnet. 

2. (a) Program steps for the read in of data during the bubble 

chamber pulse. (b) The computer beam track gates near beam 

time. In each case, the curve shows the pressure inside the 

chamber. 

3. Pressure vs. volume diagram of one bubble chamber pulse. The 

area inside the curve is the work done on the chamber liquid 

done by the expansion system. 

4. List of the gold chrome1 thermocouples during a chamber cool- 

down. Temperatures are given in degrees Kelvin. Note that 

both 15 minute and 60 minute rates are given; by comparing 

these two, the operator can tell whether the cooldown rate is 

increasing, decreasing, or remaining constant. 

5. List of data concerning bubble chamber temperatures, cooling 

loops and expansion system during the heavy neon-hydrogen run. 

In this case, the mean of all readings between 0200-0400 on 

24 May 1976 is given. The standard deviation (sigma) of each 

reading during the two hour period and the rate of change of the 

means with respect to the means for the previous two hour period 

are also given. 

6. List of the data read into the slow data block every l/16 hour. 

7. List of the data read into the fast data block every l/64 hour. 
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Figure Captions 
-2- 

8. List of the data read every chamber pulse. 

9. Copy of a page display of pulse data on the CRT terminal screen. 

This page shows hadron beam timing using simulated data during 

a period when the bubble chamber was not running. 

10. Typical operator commands needed to make a few variable summary, 

plot some of that data on the memory scope, make hard copy on 

the line printer from the memory scope, and to plot data directly 

on the line printer. The commands shown were actually used to 

make Figures 11, 12, 14 and 16. 

11. Sample of a few variable summary list. Variables shown here 

are: 

3-i. Hydrogen storage dewar pressure 

2. Hydrogen storage dewar vent valve % open 

3. Neon-hydrogen storage dewar pressure 

?I. Neon-hydrogen storage dewar condenser hydrogen level 

6. Neon-hydrogen storage dewar condenser supply valve % open 

6. Neon-hydrogen storage dewar dondenser vent valve % open 

12. Graph of variable 1, Bigure 11 vs. time. This graph was originally 

plotted on the memory scope with good resolution, but details 

were lost when it was hard copied on the line printer. 

13. Graph of the liquid hydrogen storage dewar level vs. time for a 

two day period. Points are the means of all readings during a 

two hour interval and error bars are the standard deviations of 

the readings during that period. The figure waszhard copied 

from the memory scope to the line printer. 
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14. Four small graphs of variables vs. time, hard copied from the 

memory scope to the line printer. Clockwise, starting from 

the upper left, the variables are 1, 3, 6, 2 of Eigure 11. 

15. Scatter plot of one variable vs. another hard copied from the 

memory scope to the line printer. The x axis is the hydrogen 

storage dewar pressure and the y axis is the vent valve which 

relieves this pr.essure. The plot shows the action of the air 

controller which varies the vent valve to control dewar 

pressure. The data of Figures 11, 12 and 14 are included here, 

but a longer time interval, covering several control cycles, was 

chosen for the plot. 

16. The same data as Figure 12, but plotted directly on the line 

printer. 

17. The same data as Figure 13, but plotted directly on the line 

printer. 
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**t***** 1.5’ 
AT 14: 38: 90 BC-GIPR-76 

TC 15’ R E.B’ R 
Iem TEM; 88. 
ae1 1133.2 

- -;: c ; -5.0 
-3.3 

182 130.s -2 .8 -3.3 
183 158.7 -2 ‘3 6.2 
184 *3 :&j :f.z 3 
105 111.0 -1.2 -1.5 
106 114.a -4.8 -4.2 
107 121.4 -X ,.6 -4. G1 
188 83.5 -4.8. -5.1 
169 -35.4 -3 .6 -4.3 
118 186.4 -3.6 -3.3 
111 113%;. 5 -4. El -4. 1 
::3 2 118.5 *gl -3.2 :+: pJ -3.8 *8 

114 lE16.1 -4. G3 -4. 1 
115 117.u -3.2 -3.7 
116 73.5 -4.8 -4.1 
117 as.5 -4.4 -4.3 

EUEBLE CHkMBEE :*:y:*:+z** 
VALUES 

1:: 81.3 TEMP 15’ -6. F! R 60 -5. R (3 
126 :+: FJ :)r 3 :* 0 
121 83.6 -4.8 -3.9 
122 88 .7 -4.8 “.9 
123 88. 6 -4. B 2, 
1 24 83. $3 -4.8 -5.8 
125 *$I :*B :w @  
126 :3 n - :f: Fj :* B 
1 3 L-l 7 215.3 -8.8 -1 . 5 
1. 28 55.5 -1.2 -IT 1 
129 23.8 q 8 

-5:g 
-4: 1 

1.36 186.9 -4.8 
131 1GG;. 3 -4.a -4.2 
132 *!2 :.g @  *El 
133 z+z FJ ;c:g :*Ef 
134 118.3 -3.6 -3.9 
135 116.8 -2.8 -3. i 
136 98.6 -3.6 -4. i 
1.37 lB&. 1 -3.6 -3. -2 a 

14: 32: 17 

15’ I-? 6Q.’ R 
-3.2 -.3. 7 
-2, 4 -2.8 
-2.4 -3.3 
-3. IT 

g.3 
-3.6 
-8.4 

-5.2 -5.2 
-8.4 -8.5 

:I:@ * 0 
-8.4 -8.3 
-1.5 -2. gl 
- -3 8 L. -2.8 
-1.6 -2 2 
-1.2 -114 
-c?. 8 -1.3 
-0.8 -1.1 
-u. 8 -1.4 
-4.8 -4.7 
-6.8 -3 .I 
-5.6 -2.9 
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FST 02: 00: 00 24’MRY-7G tlEl?HS 
CHQMBER TEflP IN f’s117 

TI MEAH SIGMFi 
CHAMEER CSVG, TOP 341 101.52 5.02 
GELOW D. JBCKET 487 1B2. 28 0.10 
2’ ABDVE EQUATOR 488 37.03 1.82 
;;$E PISTQN 483 106.92 :* 0 

=r I ON SEiSLS 3 18 134.43 7. 63 
Z SECT. TOF, SOT 438 :* 8 :+z g! 
FlVERAGE 484-483 93.62 2.54 

E’XFfitG ION SYSTEM IN PSIG 
PS M E A N SIGMA DR I VE, E;OUNCER 853 1114.5 7 3 . b .- 

CHAMEER LOOP VALVES 2 DFEt.1 
GL1EBLEc MAIN 158 2.5 4. B 
PUMP, PLENUM 163 100.0 w. 0 

2HR R 
-0.61 
-0.13 
-8.38 

gf. 62 
-3. El 

:+z 8 
-0 .52 

2HF: E 
-5. is 

-0.2 
8. B 

2HR R 

-0. ;:: 
-c3.10 
-8.02 
-El. 03 

it: c3 
-3.57 

2HR R 
-0.3 

0.0 
0. B 

DEVICE UNITS ME~IN s I GMA 2HR R DEVICE UNITS II E fi t-1 SIGMc?i 2HE ti 
tlfi1til LOOP 
PT 167 PSID 15.27 8.47 -8.05 p ‘s) 6 1 $I :: 15. Q 10. 1 -8. .3 

PUMP LOOP 
TIC 163 SPEC 4. lE! 8.2% -0. r32 .P’v’ iif 84.3 E. 3 -1.3 
DPT 513 PSID 13.25 0.08 8.03 FI 346 1tGCt-l 8 _. 34 B. 11 0.02 

FLENUM LOOP 
FiT 164 PSID 22.23 8.BG -8.82 P V 164 % 4.5 3.7 El. 5 

REFRIGERATICN 
FI 2Q5 INCH Et.36 2.42 B. 33 FT 184 PSIG 27.81 8.37 -8.56 

CHAMBER 
APVQ 0 KJ 5.017 8.426 El.033 AE-P B MS 5.1 8. 1 0. 1 
fiP’v’1 0 KJ 3 .a~4 .-.--a 0.163 -0.127 ADF 0 PSI 45.21 8.11 -#. 13 
APW 0 %J A 185 -a. 163 fq $<I 1 8 I r’; C H 1.31 0.01 -8.01 
CPX 180 FSIA 

ly9.30 L. 337 
-6.03 -8. @2 
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